Лупа, микроскоп, телескоп.

Вопрос 2. Для чего их применяют?

Их применяют для того, чтобы увеличить рассматриваемый предмет в несколько раз.

Лабораторная работа № 1. Устройство лупы и рассматривание с её помощью клеточного строения растений.

1. Рассмотрите ручную лупу. Какие части она имеет? Каково их назначение?

Ручная лупа состоит из рукоятки и увеличительного стекла, выпуклого с двух сторон и вставленного в оправу. При работе лупу берут за рукоятку и приближают к предмету на такое расстояние, при котором изображение предмета через увеличительное стекло наиболее чёткое.

2. Рассмотрите невооружённым глазом мякоть полуспелого плода томата, арбуза, яблока. Что характерно для их строения?

Мякоть плодов рыхлая и состоит из мельчайших крупинок. Это клетки.

Хорошо видно, что мякоть плода помидора имеет зернистое строение. У яблока мякоть немного сочная, а клетки маленькие и плотно находятся друг к другу. Мякоть арбуза состоит из множества, наполненных соком клеточек, которые располагаются то ближе, то дальше.

3. Рассмотрите кусочки мякоти плодов под лупой. Зарисуйте увиденное в тетрадь, рисунки подпишите. Какую форму имеют клетки мякоти плодов?

Даже невооруженным глазом, а еще лучше под лупой можно видеть, что мякоть зрелого арбуза состоит из очень мелких крупинок, или зернышек. Это клетки - мельчайшие "кирпичики", из которых состоят тела всех живых организмов. Также и мякоть плода помидора под лупой состоит клеток, похожих на округлые зернышки.

Лабораторная работа № 2. Устройство микроскопа и приёмы работы с ним.

1. Изучите микроскоп. Найдите тубус, окуляр, объектив, штатив с предметным столиком, зеркало, винты. Выясните, какое значение имеет каждая часть. Определите, во сколько раз микроскоп увеличивает изображение объекта.

Тубус - трубка, в которой заключены окуляры микроскопа. Окуляр - элемент оптической системы, обращённый к глазу наблюдателя, часть микроскопа, предназначенная для рассматривания изображения, формируемого зеркалом. Объектив предназначен для построения увеличенного изображения с точностью воспроизведения по форме и цвету объекта исследования. Штатив удерживает тубус с окуляром и объективом на определенном расстоянии от предметного столика, котором размещается исследуемый материал. Зеркало, которое располагается под предметным столиком, служит для подачи луча света под рассматриваемый предмет, т. е. улучшает освещенность предмета. Винты микроскопа – это механизмы для настройки максимально эффективного изображения на окуляре.

2. Познакомьтесь с правилами пользования микроскопом.

При работе с микроскопом необходимо соблюдать следующие правила:

1. Работать с микроскопом следует сидя;

2. Микроскоп осмотреть, вытереть от пыли мягкой салфеткой объективы, окуляр, зеркало;

3. Микроскоп установить перед собой, немного слева на 2-3 см от края стола. Во время работы его не сдвигать;

4. Открыть полностью диафрагму;

5. Работу с микроскопом всегда начинать с малого увеличения;

6. Опустить объектив в рабочее положение, т.е. на расстояние 1 см от предметного стекла;

7. Установить освещение в поле зрения микроскопа, используя зеркало. Глядя одним глазом в окуляр и пользуясь зеркалом с вогнутой стороной, направить свет от окна в объектив, а затем максимально и равномерно осветить поле зрения;

8. Положить микропрепарат на предметный столик так, чтобы изучаемый объект находился под объективом. Глядя сбоку, опускать объектив при помощи макровинта до тех пор, пока расстояние между нижней линзой объектива и микропрепаратом не станет 4-5 мм;

9. Смотреть одним глазом в окуляр и вращать винт грубой наводки на себя, плавно поднимая объектив до положения, при котором хорошо будет видно изображение объекта. Нельзя смотреть в окуляр и опускать объектив. Фронтальная линза может раздавить покровное стекло, и на ней появятся царапины;

10. Передвигая препарат рукой, найти нужное место, расположить его в центре поля зрения микроскопа;

11. По окончании работы с большим увеличением, установить малое увеличение, поднять объектив, снять с рабочего столика препарат, протереть чистой салфеткой все части микроскопа, накрыть его полиэтиленовым пакетом и поставить в шкаф.

3. Отработайте последовательность действий при работе с микроскопом.

1. Поставьте микроскоп штативом к себе на расстоянии 5-10 см от края стола. В отверстие предметного столика направьте зеркалом свет.

2. Поместите приготовленный препарат на предметный столик и закрепите предметное стекло зажимами.

3. Пользуясь винтом, плавно опустите тубус так, чтобы нижний край объектива оказался на расстоянии 1-2 мм от препарата.

4. В окуляр смотрите одним глазом, не закрывая и не зажмуривая другой. Глядя в окуляр, при помощи винтов медленно поднимайте тубус, пока не появится чёткое изображение предмета.

5. После работы микроскоп уберите в футляр.

Вопрос 1. Какие увеличительные приборы вы знаете?

Ручная лупа и штативная лупа, микроскоп.

Вопрос 2. Что представляет собой лупа и какое увеличение она даёт?

Лупа - самый простой увеличительный прибор. Ручная лупа состоит из рукоятки и увеличительного стекла, выпуклого с двух сторон и вставленного в оправу. Она увеличивает предметы в 2-20 раз.

Штативная лупа увеличивает предметы в 10-25 раз. В её оправу вставлены два увеличительных стекла, укреплённых на подставке - штативе. К штативу прикреплён предметный столик с отверстием и зеркалом.

Вопрос 3. Как устроен микроскоп?

В зрительную трубку, или тубус, этого светового микроскопа вставлены увеличительные стёкла (линзы). В верхнем конце тубуса находится окуляр, через который рассматривают различные объекты. Он состоит из оправы и двух увеличительных стёкол. На нижнем конце тубуса помещается объектив, состоящий из оправы и нескольких увеличительных стёкол. Тубус прикреплён к штативу. К штативу прикреплён также предметный столик, в центре которого имеется отверстие и под ним зеркало. Пользуясь световым микроскопом, можно видеть изображение объекта, освещённого с помощью этого зеркала.

Вопрос 4. Как узнать, какое увеличение даёт микроскоп?

Чтобы узнать, насколько увеличивается изображение при использовании микроскопа, надо умножить число, указанное на окуляре, на число, указанное на используемом объективе. Например, если окуляр даёт 10-кратное увеличение, а объектив - 20-кратное, то общее увеличение 10 х 20 = 200 раз.

Подумайте

Почему с помощью светового микроскопа нельзя изучать непрозрачные предметы?

Главный принцип работы светового микроскопа состоит в том, что через прозрачный или полупрозрачный предмет (объект исследования), размещенный на предметном столике, проходят лучи света и попадают на систему линз объектива и окуляра. А через непрозрачные предметы свет не проходит, соответственно, изображения мы не увидим.

Задания

Выучите правила работы с микроскопом (см. выше).

Используя дополнительные источники информации, выясните, какие подробности строения живых организмов позволяют рассмотреть самые современные микроскопы.

Световой микроскоп позволил рассмотреть строение клеток и тканей живых организмов. И вот, ему на смену уже пришли современные электронные микроскопы, позволяющие рассматривать молекулы и электроны. А электронный растровый микроскоп позволяет получать изображения, имеющие разрешение, измеряемое в нанометрах (10-9). Можно получить данные, касающиеся строения молекулярного и электронного состава поверхностного слоя исследуемой поверхности.

Если рассмотреть мякоть плода помидора или арбуза при увеличении микроскопа примерно 56 раз, видны округлые прозрачные клетки. У яблока они бесцветные, у арбуза и помидора — бледно-розовые.


1050;летки в «кашице» лежат рыхло, разъединены между собой, и поэтому хорошо видно, что каждая клетка имеет свою оболочку, или стенку.
Вывод: Живая клетка растений имеет:
1. Живое содержимое клетки. (цитоплазма,вакуоли, ядро)
2. Различные включения в живом содержимом клетке.
#1086;тложения запасных питательных веществ: белковые зерна, капли масла, крахмальные зерна.)
3. Клеточная оболочка, или стенка.(Она прозрачная, плотная, упругая, не дает цитоплазме растекаться, придает клетке определенную форму.)

Лупа, микроскоп, телескоп.

Вопрос 2. Для чего их применяют?

Их применяют для того, чтобы увеличить рассматриваемый предмет в несколько раз.

Лабораторная работа № 1. Устройство лупы и рассматривание с её помощью клеточного строения растений.

1. Рассмотрите ручную лупу. Какие части она имеет? Каково их назначение?

Ручная лупа состоит из рукоятки и увеличительного стекла, выпуклого с двух сторон и вставленного в оправу. При работе лупу берут за рукоятку и приближают к предмету на такое расстояние, при котором изображение предмета через увеличительное стекло наиболее чёткое.

2. Рассмотрите невооружённым глазом мякоть полуспелого плода томата, арбуза, яблока. Что характерно для их строения?

Мякоть плодов рыхлая и состоит из мельчайших крупинок. Это клетки.

Хорошо видно, что мякоть плода помидора имеет зернистое строение. У яблока мякоть немного сочная, а клетки маленькие и плотно находятся друг к другу. Мякоть арбуза состоит из множества, наполненных соком клеточек, которые располагаются то ближе, то дальше.

3. Рассмотрите кусочки мякоти плодов под лупой. Зарисуйте увиденное в тетрадь, рисунки подпишите. Какую форму имеют клетки мякоти плодов?

Даже невооруженным глазом, а еще лучше под лупой можно видеть, что мякоть зрелого арбуза состоит из очень мелких крупинок, или зернышек. Это клетки — мельчайшие «кирпичики», из которых состоят тела всех живых организмов. Также и мякоть плода помидора под лупой состоит клеток, похожих на округлые зернышки.

Лабораторная работа № 2. Устройство микроскопа и приёмы работы с ним.

1. Изучите микроскоп. Найдите тубус, окуляр, объектив, штатив с предметным столиком, зеркало, винты. Выясните, какое значение имеет каждая часть. Определите, во сколько раз микроскоп увеличивает изображение объекта.


Тубус - трубка, в которой заключены окуляры микроскопа. Окуляр - элемент оптической системы, обращённый к глазу наблюдателя, часть микроскопа, предназначенная для рассматривания изображения, формируемого зеркалом. Объектив предназначен для построения увеличенного изображения с точностью воспроизведения по форме и цвету объекта исследования. Штатив удерживает тубус с окуляром и объективом на определенном расстоянии от предметного столика, котором размещается исследуемый материал. Зеркало, которое располагается под предметным столиком, служит для подачи луча света под рассматриваемый предмет, т. е. улучшает освещенность предмета. Винты микроскопа – это механизмы для настройки максимально эффективного изображения на окуляре.

2. Познакомьтесь с правилами пользования микроскопом.


При работе с микроскопом необходимо соблюдать следующие правила:

1. Работать с микроскопом следует сидя;

2. Микроскоп осмотреть, вытереть от пыли мягкой салфеткой объективы, окуляр, зеркало;

3. Микроскоп установить перед собой, немного слева на 2-3 см от края стола. Во время работы его не сдвигать;

4. Открыть полностью диафрагму;

5. Работу с микроскопом всегда начинать с малого увеличения;

6. Опустить объектив в рабочее положение, т.е. на расстояние 1 см от предметного стекла;

7. Установить освещение в поле зрения микроскопа, используя зеркало. Глядя одним глазом в окуляр и пользуясь зеркалом с вогнутой стороной, направить свет от окна в объектив, а затем максимально и равномерно осветить поле зрения;

8. Положить микропрепарат на предметный столик так, чтобы изучаемый объект находился под объективом. Глядя сбоку, опускать объектив при помощи макровинта до тех пор, пока расстояние между нижней линзой объектива и микропрепаратом не станет 4-5 мм;

9. Смотреть одним глазом в окуляр и вращать винт грубой наводки на себя, плавно поднимая объектив до положения, при котором хорошо будет видно изображение объекта. Нельзя смотреть в окуляр и опускать объектив. Фронтальная линза может раздавить покровное стекло, и на ней появятся царапины;

10. Передвигая препарат рукой, найти нужное место, расположить его в центре поля зрения микроскопа;

11. По окончании работы с большим увеличением, установить малое увеличение, поднять объектив, снять с рабочего столика препарат, протереть чистой салфеткой все части микроскопа, накрыть его полиэтиленовым пакетом и поставить в шкаф.


3. Отработайте последовательность действий при работе с микроскопом.

1. Поставьте микроскоп штативом к себе на расстоянии 5-10 см от края стола. В отверстие предметного столика направьте зеркалом свет.

2. Поместите приготовленный препарат на предметный столик и закрепите предметное стекло зажимами.

3. Пользуясь винтом, плавно опустите тубус так, чтобы нижний край объектива оказался на расстоянии 1-2 мм от препарата.

4. В окуляр смотрите одним глазом, не закрывая и не зажмуривая другой. Глядя в окуляр, при помощи винтов медленно поднимайте тубус, пока не появится чёткое изображение предмета.

5. После работы микроскоп уберите в футляр.

Вопрос 1. Какие увеличительные приборы вы знаете?

Ручная лупа и штативная лупа, микроскоп.

Вопрос 2. Что представляет собой лупа и какое увеличение она даёт?

Лупа - самый простой увеличительный прибор. Ручная лупа состоит из рукоятки и увеличительного стекла, выпуклого с двух сторон и вставленного в оправу. Она увеличивает предметы в 2-20 раз.

Штативная лупа увеличивает предметы в 10-25 раз. В её оправу вставлены два увеличительных стекла, укреплённых на подставке - штативе. К штативу прикреплён предметный столик с отверстием и зеркалом.

Вопрос 3. Как устроен микроскоп?

В зрительную трубку, или тубус, этого светового микроскопа вставлены увеличительные стёкла (линзы). В верхнем конце тубуса находится окуляр, через который рассматривают различные объекты. Он состоит из оправы и двух увеличительных стёкол. На нижнем конце тубуса помещается объектив, состоящий из оправы и нескольких увеличительных стёкол. Тубус прикреплён к штативу. К штативу прикреплён также предметный столик, в центре которого имеется отверстие и под ним зеркало. Пользуясь световым микроскопом, можно видеть изображение объекта, освещённого с помощью этого зеркала.


Вопрос 4. Как узнать, какое увеличение даёт микроскоп?

Чтобы узнать, насколько увеличивается изображение при использовании микроскопа, надо умножить число, указанное на окуляре, на число, указанное на используемом объективе. Например, если окуляр даёт 10-кратное увеличение, а объектив - 20-кратное, то общее увеличение 10 х 20 = 200 раз.

Подумайте

Почему с помощью светового микроскопа нельзя изучать непрозрачные предметы?

Главный принцип работы светового микроскопа состоит в том, что через прозрачный или полупрозрачный предмет (объект исследования), размещенный на предметном столике, проходят лучи света и попадают на систему линз объектива и окуляра. А через непрозрачные предметы свет не проходит, соответственно, изображения мы не увидим.

Задания

Выучите правила работы с микроскопом (см. выше).

Используя дополнительные источники информации, выясните, какие подробности строения живых организмов позволяют рассмотреть самые современные микроскопы.

Световой микроскоп позволил рассмотреть строение клеток и тканей живых организмов. И вот, ему на смену уже пришли современные электронные микроскопы, позволяющие рассматривать молекулы и электроны. А электронный растровый микроскоп позволяет получать изображения, имеющие разрешение, измеряемое в нанометрах (10-9). Можно получить данные, касающиеся строения молекулярного и электронного состава поверхностного слоя исследуемой поверхности.

Приготовьте временный препарат мякоти томата. Для этого снимите пинцетом кожицу с поверхности зрелого томата, концом скальпеля возьмите немного мякоти, перенесите ее в каплю воды на предметное стекло, распределите равномерно препаровальной иглой, накройте покровным стеклом и рассмотрите под микроскопом при малом и большом увеличениях. Вы увидите, что клетки имеют большей частью округлую форму и тонкую оболочку.

Рассмотрите ядро с ядрышком, погруженные в зернистую цитоплазму, расположенную вдоль стенок клетки, а также в виде тяжей, пересекающих клетку. Между тяжами цитоплазмы находятся вакуоли с бесцветным клеточным соком. В цитоплазме видны органоиды хромопласты разнообразной формы, оранжевой или красноватой окраски, которые принимают участие в процессе обмена веществ. Цвет их зависит от пигментов –каротина (оранжево-красного) иксантофилла (желтого). Хромопласты плодов томата и шиповника содержат изомер каротина – ликопин. В несозревших плодах хромопласты имеют округлую форму. По мере созревания пигмент кристаллизуется, отстает от стенки и превращается в игольчатые образования.

ЗАДАНИЕ. Зарисуйте несколько клеток томата с хромопластами.

Надпись над рисунком: Клетки из мякоти томата (Lycopersicum esculentum Mill ). Временный микропрепарат. Х100 и х400.

На рисунке должны быть обозначены оболочка, ядро, цитоплазма, хромопласты.

Работа 2.3. Микроскопия клеток крови человека

Готовые, окрашенные по Романовскому-Гимза препараты крови человека рассмотрите под микроскопом с объективами х10, х40, х100. Основную массу клеток в поле зрения составляют красные кровяные тельца эритроциты . На данном препарате цитоплазма эритроцитов окрашена в темно-синий цвет. Ядра отсутствуют (они есть у предшественников эритроцитов, но утрачиваются ими в ходе созревания). Центральная часть эритроцитов имеет зону просветления, что свидетельствует о двояковогнутом строении этих клеток.

Среди эритроцитов изредка встречаются более крупные белые кровяные клетки - лейкоциты , форма которых варьирует от округлой до амебовидной. Их основная функция –фагоцитоз . Цитоплазма лейкоцитов окрашена в розоватый цвет. Они содержат ядро темно-красного цвета. В некоторых лейкоцитах ядра напоминают палочки, в других – разделены на сегменты. Встречаются такжелимфоциты – клетки иммунологической памяти. У них очень крупное, округлой формы, темно-красное ядро, цитоплазма выглядит как тонкий кольцевидный или серповидный ободок.

ЗАДАНИЕ . Зарисуйте несколько эритроцитов, лейкоцитов с ядрами разной формы и лимфоцитов.

Надпись над рисунком: Клетки крови человека (Homo sapiens ). Постоянный микропрепарат. Фиксация этанолом. Окраска по Романовскому-Гимза. Х1000.

Материалы, представляемые в отчете по лабораторной работе

1. Заполненная таблица «Основные органеллы и структурные компоненты клетки». При заполнении таблицы отметьте различия по встречаемости некоторых органелл у высших и низших растений (например: у высших – «-», у низших - «+»).

2. Зарисовка микропрепарата клеток валлиснерии (элодеи).

3. Зарисовка микропрепарата клеток мякоти томата.

4. Зарисовка микропрепарата клеток крови человека.

Таблица 1

Основные органеллы и структурные компоненты клетки

Органеллы и

структурные

компоненты

Наличие в клетках …

прокариот

эукариот

растительных

животных

1. Клеточная стенка

1. Каркасная (придает форму клетке).

2. Защита от механических повреждений.

2. Цитоплазматическая мембрана

3. Гликокаликс

5. Ядрышко

6. Цитозоль

7.Цитоскелет: микротрубочки, микронити

8. Митохондрии

9. ЭПС гранулярная

10. ЭПС гладкая

11. Аппарат Гольджи

12. Рибосомы

13. Центриоли

14. Жгутики

15. Реснички

16. Включения

17. Вакуоли

18. Лейкопласты

19. Хромопласты

20. Хлоропласты

ТЕМА 3

РАЗМНОЖЕНИЕ ОРГАНИЗМОВ. ДЕЛЕНИЕ КЛЕТОК.

МИТОЗ. МЕЙОЗ

Цели занятия:

1. Изучить основные формы бесполого и полового размножения.

2. Изучить митотический цикл клетки, научиться различать фазы митоза на временных препаратах клеток корешков растений.

3. Изучить структурные особенности метафазных хромосом.

4. Изучить основные стадии мейоза.

Вопросы и задания для самоподготовки

1. Проведите сравнение бесполого и полового размножения.

2. Формы бесполого размножения, их особенности и значение.

3. Формы полового размножения, их особенности и значение.

4. Типы тканей по митотической активности. Резервный пул клеток.

5. Клеточный и митотический цикл, его фазы и периоды.

6. Причины митоза. Фазы митоза.

7. Биологическое значение митоза. Амитоз, эндомитоз, политения.

8. Строение метафазных хромосом, их классификация.

9. Мейоз, основные фазы и стадии I деления.

10. Мейоз, основные фазы II деления.

11. Отличия митоза от мейоза.

12. Биологическое значение мейоза.

13. Образование мужских и женских половых клеток, характеристика ос-новных стадий, сходство и различие.

14. Место мейоза в жизненном цикле организмов.

Задание 1. Рассматривание кожицы лука.

4. Сделайте вывод.

Ответ. Кожица лука состоит из клеток, которые плотно прилегают одна к другой.

Задание 2. Рассматривание клеток томата (арбуза, яблока).

1. Приготовьте микропрепарат мякоти плода. Для этого от разрезанного томата (арбуза, яблока) отделите препаровальной иглой маленький кусочек мякоти и положите его в каплю воды на предметное стекло. Расправьте препаровальной иглой в капле воды и накройте покровным стеклом.

Ответ. Что делать. Возьмите мякоть плода. Положите её в каплю воды на предметном стекле (2).

2. Рассмотрите микропрепарат под микроскопом. Найдите отдельные клетки. Рассмотрите клетки при малом увеличении, а затем при большом.

Отметьте цвет клетки. Поясните, почему капля воды изменила свой цвет и отчего это произошло?

Ответ. Цвет клеток мякоти арбуза красный, яблока – желтый. Капля воды изменяет свой цвет, потому что она поступает клеточный сок, содержащийся в вакуолях.

3. Сделайте вывод.

Ответ. Живой растительный организм состоит из клеток. Содержимое клетки представлено полужидкой прозрачной цитоплазмой, в которой находятся более плотное ядро с ядрышком. Клеточная оболочка прозрачная, плотная, упругая, не даёт цитоплазме растекаться, придаёт ей определённую форму. Некоторые участки оболочки более тонкие – это поры, через них происходит связь между клетками.

Таким образом, клетка – это единица строения растения

Даже если вы никогда не интересовались, как выглядит наша повседневная пища в экстремальном приближении, эти фотографии, сделанные через электронный микроскоп, способны впечатлить своей красотой и оригинальностью.

Дело в том, что простой оптический микроскоп ограничен в своей разрешающей способности длиной волны света. Объект меньших размеров световая волна будет огибать, таким образом отражённый сигнал не сможет вернуться на датчик прибора и мы не получим никакой информации. Другое дело, когда вместо пучка света на объект направляется поток электронов - они отражаются, будучи сопоставимы по размерам, и возвращаются в недра микроскопа, неся с собой различную информацию об объекте.

Единственное чего мы уже не можем, очутившись так глубоко в микромире, так это видеть и различать цвета, т.к. их там по сути ещё нет. Поэтому все яркие краски, представленные на фотографиях, сделанных через сканирующий электронный микроскоп являются плодом работы художников.

Цветок брокколи , например, выглядит как тюльпан. Так что если у вашей девушки праздник, а вы забыли купить цветы, то можете просто достать из холодильника Брокколи и поднести микроскоп:)

Эта планета пришельцев на самом деле ни что иное как черника . Это впечатляет, но разве кто-нибудь станет после этого кушать чернику по ягодке? Даёшь сразу целое Созвездие Йогурта!


Песчинка соли являет собой пример типичной фрактальной формы. И снаружи, и внутри один и тот же рисунок кристалла.


Воздушный мятный шоколад. Как мы видим, внутри мелких пор шоколада находятся ещё более мелкие поры мятной начинки.

Земляника . На первом плане хрустящее, масляное семечко. Смутная волокнистость этой ягоды теперь более чем осязаема.


Перец чили "Птичий глаз". Самый маленький представитель Чили выглядит солидно и респектабельно, его даже можно спутать с шоколадным батончиком с орехами.


Сырое мясо . Вот это волокна! Если бы не питательная ценность сего продукта, воистину быть ему тканью для одежды.


Приготовленное мясо. А вот после варки и жарки волокна крошатся и ломаются, что облегчает работу нашим зубам и нашему желудку.

Белый виноград . Кто бы мог подумать, что этот однородный студень внутри ягоды винограда имеет столь пористый характер. Вероятно, именно микропористость и создаёт то знакомое ощущение пощипывания языка (как будто взрываются пузырьки).


Изящный и пряный шафран похож на короотвал с деревобрабатывающего завода. Пикантный кусок исполинского дерева.


Сушёный плод аниса выявляет сходство с головоногим моллюском, у которого слишком много ног.

Кофейные гранулы. Даже зная,что это на самом деле, всё равно трудно поверить: эти нежные, разрисованные иероглифами губки восхитительны! Если бы компании производящие гранулированный кофе, помещали такие фотографии на свои упаковки, то с большой долей вероятности смогли бы существенно увеличить свои продажи.


Сахар . Фрактальный брат кристаллов соли. Кто там говорит, что природа не терпит прямых углов?

Сахарозаменитель "Аспартам". Вот и думайте: может ли неровный, дырявый шар заменить полированный куб или параллелепипед?

Помидор . Или всё-же соты красных марсианских пчёл? Учёные пока не знают точного ответа на этот вопрос.


Жареное кофейное зерно так и просит, чтобы в его микроячейки положили по орешку и забетонировали снаружи сливками.


Капуста романеско . Пожалуй, это единственный продукт, похожий на себя в макромире.


Миндальный орех представляет собой слои из термостойких углеводных плит. Будь они побольше, можно было бы и дом собрать.


Если миндаль это дом, то сахарная пудра на кексе это мягкая мебель Почему вся вредная пища выглядит так уютно?



Лук . Как видно, это довольно шершавые слои наждачной бумаги. Так скажут те, кто не любит лук. Другие же отметят сходство с бархатными коврами.


Редиска изнутри рассыпается на целые залежи драгоценных камней и вулканических пород.

Итак, мы убедились, что наша повседневная еда в сильно преувеличенном виде вызывает стойкие ассоциации с горными породами, полезными ископаемыми и даже космическими объектами. А что если однажды - в недрах Вселенной - мы обнаружим целые планеты и звёздные системы сплошь состоящие из органики, в том числе пригодной в пищу? Мы просто обязаны быть к этому готовы! Освоение пищевых пространств и колонизация съедобного ландшафта - вот основная тема исследований известного американского фотографа и писателя Кристофера Боффоли. Свою коллекцию он назвал "Несоответствие", кстати, фигурки людей прикреплялись к поверхности нектаром агавы.


Ремонтная команда осматривает разбитое яйцо . Ничего не поделаешь: теперь эту дыру придётся заделывать.


Банановые дороги обещают стать наиболее удобным путепроводом для велосипедистов.


Ограбление в инжирном районе. А раньше там даже двери на ночь не запирали.


Будьте осторожней рядом с дынными провалами.


Разведчики конфетных россыпей двигаются уверенным шагом и оценивают масштаб разработки.


Дети играют в снегу на кексовом холме. Следите, чтобы никто не упал и не простудился.


Вафельные поляны считаются лучшими местами для разведения пчёл.


Рабочий, смазывающий сосиску в тесте. Говорят, что Гарри слишком усердствовал с горчицей, но в том нет его вины: всё решают профсоюзы.