Прочные материалы имеют широкий спектр использования. Есть не только самый твёрдый металл, но и самая твердая и прочная древесина, а так же самые прочные искусственно созданные материалы.

Где используют самые прочные материалы?

Сверхпрочные материалы применяют во многих сферах жизни. Так, химики Ирландии и Америки разработали технологию, посредством которой производится прочное текстильное волокно. Нить этого материала в диаметре – пятьдесят микрометров. Она создана из десятков миллионов нанотрубок, которые с помощью полимера скреплены между собой.

Прочность этого электропроводящего волокна на разрыв выше прочности паутины паука-кругопряда в три раза. Полученный материал используется для изготовления сверхлегких бронежилетов и спортивного инвентаря. Название еще одного прочного материала – ONNEX, созданного по заказу Министерства обороны США. Кроме применения его при производстве бронежилетов, новый материал можно так же использовать в системах летного контроля, сенсорах, двигателях.


Существует разработанная учеными технология, благодаря которой прочные, твердые, прозрачные и легкие материалы получают посредством преобразования аэрогелей. На их основе можно производить облегченные бронежилеты, броню для танков и прочные строительные материалы.

Новосибирские ученые изобрели плазменный реактор нового принципа, благодаря которому можно производить нанотубулен – сверхпрочный искусственный материал. Этот материал открыли еще двадцать лет назад. Он представляет собой массу эластичной консистенции. Она состоит из сплетений, которые невозможно увидеть невооруженным глазом. Толщина стенок данных сплетений – один атом.


То что атомы как бы вложены друг в друга по принципу «русской матрешки», делает нанотубулен наиболее прочным материалом из всех известных. При добавлении этого материала в бетон, металл, пластик, значительно усиливаются их прочность и электропроводность. Нанотубулен поможет сделать машины и самолеты более прочными. Если же новый материал придет в широкое производство, то очень прочными могут стать дороги, дома, техника. Разрушить их будет очень сложно. Нанотубулен до сих пор не был внедрен в широкое производство из-за очень высокой себестоимости. Однако новосибирским ученым удалось значительно снизить себестоимость этого материала. Теперь нанотубулен можно производить не килограммами, а тоннами.


Самый твердый металл

Среди всех известных металлов самым твердым является хром, однако его твердость во многом зависит от чистоты. Его свойства – коррозионностойкость, жаропрочность и тугоплавкость. Хром – металл беловато-голубого оттенка. Его твердость по Бринеллю равна 70-90 кгc/см2. Температура плавления самого твердого металла – тысяча девятьсот семь градусов по Цельсию при плотности семь тысяч двести кг/м3. Этот металл находится в земной коре в размере 0,02 процента, что немало. Обычно он встречается в виде хромистого железняка. Хром добывают из силикатных горных пород.


Этот металл используют в промышленности, выплавляя хромистую сталь, нихром и так далее. Его применяют для антикоррозийных и декоративных покрытий. Хромом очень богаты падающие на Землю каменные метеориты.

Самое прочное дерево

Есть древесина, которая превосходит по прочности чугун и может сравниться с прочностью железа. Речь идет о «Березе Шмидта». Ее так же называют Железной березой. Человек не знает более прочного дерева, чем это. Открыл ее русский ученый-ботаник по фамилии Шмидт, находясь на Дальнем Востоке.


Древесина превышает по прочности чугун в полтора раза, прочность на изгиб примерно равна прочности железа. Из-за таких свойств, железная береза вполне могла бы иногда заменять металл, ведь эта древесина не подвержена коррозии и гниению. Корпус судна, сделанный из Железной березы можно даже не красить, судно не разрушит коррозия, действие кислот ему тоже не страшно.


Березу Шмидта невозможно пробить пулей, топором ее не срубишь. Из всех берез нашей планеты долгожителем является именно Железная береза – она живет четыреста лет. Ее место произрастания – заповедник Кедровая Падь. Это редкий охраняемый вид, который занесен в Красную Книгу. Если бы не такая редкость, сверхпрочную древесину этого дерева можно было бы повсеместно использовать.

А вот самые высокие деревья в мире секвойи не являются очень прочным материалом..

Самый прочный материал во Вселенной

Наиболее прочным и одновременно легким материалом нашей Вселенной является графен. Это углеродная пластина, толщина которой всего один атом, но она прочнее алмаза, а электропроводность в сто раз выше кремния компьютерных чипов.


В скором времени графен покинет научные лаборатории. Все ученые мира говорят сегодня о его уникальных свойствах. Так, несколько грамм материала будет достаточно для покрытия целого футбольного поля. Графен очень гибкий, его можно складывать, изгибать, сворачивать рулоном.

Возможные сферы его использования – солнечные батареи, сотовые телефоны, сенсорные экраны, супербыстрые компьютерные чипы.
Подпишитесь на наш канал в Яндекс.Дзен

Драгоценный камень некоторое время назад потерял свой титул самого твёрдого материала в мире, уступив искусственным наноматериалам немного большей твёрдости. Сегодня редкое натуральное вещество, по всей видимости, оставит всех прочих позади - оно на 58% твёрже алмаза.

Зиченг Пэн (Zicheng Pan) из Шанхайского университета Цзяо Тун совместно с коллегами смоделировал, как атомы в двух субстанциях предположительно имеющих свойства очень твёрдых материалов будут реагировать на воздействие специального датчика.

Экстремальные условия

Первый - вюрцит бор нитрид имеет сходную с алмазом структуру, но состоит из других атомов.

Второй - минерал лонсдейлит, или гексагональный алмаз, состоит из атомов углерода, таких как алмаз, но они организованы по-другому.
Моделирование показало, что вюрцит бор нитрид способен выдержать на 18% больше воздействия, чем алмаз, а лонсдейлит - на 58% больше. Если результаты подтвердятся в рамках физических экспериментов, оба материала окажутся намного твёрже любого известного вещества.

Но произвести такие испытания будет не просто, т.к. оба материала не часто встречаются в природе.

Редкое вещество лонсдейлит формируется, когда метеориты, содержащие графит падают на Землю, а вюрцит бор нитрид формируется в процессе вулканических извержений при высоких температурах и давлении.

Гибкость

При успешных результатах вюрцит бор нитрид может стать наиболее применимым из двух, благодаря тому, что он устойчивый к кислороду при более высоких температурах, чем алмаз. Это делает его идеальным для применения на концах режущих и сверлильных инструментов, работающих при очень высоких температурах, или в качестве коррозиеустойчивых плёнок - на поверхности космических кораблей, например.

Парадоксально, своей твёрдостью вюрцит бор нитрид обязан гибкости связей между атомами, которые его образуют. Когда материал подвергается воздействию, некоторые связи меняют направление почти на 90º, чтобы ослабить напряжение. После того, как алмаз и вюрцит бор нитрид были подвергнуты одному и тому же процессу, что-то в структуре вюрцит бор нитрида сделало его почти на 80% твёрже, утверждает соавтор исследования Чанфенг Чен (Changfeng Chen) из университета Невады в Лас-Вегасе.

Учёные подчёркивают, для того, чтобы доказать теорию, необходимы монокристаллы каждого из материалов. На данный момент не существует способов изолировать или вырастить такие кристаллы.

На сегодняшний день не существует единой классификации полудрагоценных камней , есть лишь условное деление. Узнать все о камнях, их свойства описания можно на сайте http://www.catalogmineralov.ru/cont/poludragocennye_kamni.htm. Решая сделать подарок с полудрагоценным камнем близкому человеку, для начала ознакомьтесь с этим камнем.

Знаете ли вы, какой материал на нашей планете считается самым крепким? Со школы нам всем известно, что алмаз - крепчайший минерал, но он далеко не самый крепкий. Твёрдость - не главное свойство, которым характеризуется материя. Одни свойства могут мешать появлению царапин, другие - способствовать эластичности. Хотите знать больше? Перед вами рейтинг материалов, которые будет очень сложно разрушить.

Бриллиант во всей своей красе

Классический пример прочности, засевший в учебниках и головах. Его твёрдость означает устойчивость к царапинам. В шкале Мооса (качественная шкала, которая измеряет сопротивление различных минералов) алмаз показывает результат в 10 (шкала идёт от 1 до 10, где 10 - самое твёрдое вещество). Алмаз настолько твёрдый, что другие алмазы должны быть использованы для его резки.


Паутина, способная остановить аэробус

Этот материал часто упоминается как самое сложное биологическое вещество в мире (хотя это утверждение сейчас оспаривается изобретателями), сеть паука Дарвина сильнее, чем сталь и обладает большим запасом жёсткости, чем кевлар. Её вес не менее замечателен: нить, достаточно длинная, чтобы окружить Землю, весит всего 0,5 кг.


Аэрографит в обычной посылке

Эта синтетическая пена является одним из самых лёгких строительных материалов в мире. Аэрографит примерно в 75 раз легче пенополистирола (но намного сильнее!). Этот материал может быть спрессован в 30 раз от его первоначального размера без ущерба для его структуры. Ещё один интересный момент: аэрографит может выдержать массу в 40 000 раз больше собственного веса.


Стекло во время краш-теста

Это вещество разработано учёными в Калифорнии. Микролегированное стекло имеет почти совершенное сочетание жёсткости и прочности. Причиной этого является то, что его химическая структура снижает хрупкость стекла, но сохраняет жёсткость палладия.


Вольфрамовое сверло

Карбид вольфрама невероятно твёрдый и имеет качественно высокую жёсткость, но он довольно хрупкий, его легко можно согнуть.


Карбид кремния в виде кристаллов

Этот материал используется в создании брони для боевых танков. Фактически он используется почти во всём, что может защищать от пуль. Он имеет рейтинг твёрдости Мооса 9, а также имеет низкий уровень теплового расширения.


Молекулярная структура нитрида бора

Примерно такой же сильный, как алмаз, кубический нитрид бора имеет одно важное преимущество: он нерастворим в никеле и железе при высоких температурах. По этой причине его можно использовать для обработки этих элементов (алмазные формы нитридов с железом и никелем при высоких температурах).


Кабель из Dyneema

Считается самым сильным волокном в мире. Возможно, вас удивит факт: «дайнима» легче воды, но она может остановить пули!


Трубка сплава

Титановые сплавы чрезвычайно гибкие и имеют очень высокую прочность на растяжение, но не имеют такой жёсткости, как стальные сплавы.


Аморфные металлы легко меняют форму

Liquidmetal разработан в компании Caltech. Несмотря на название, этот металл не является жидким и при комнатной температуре имеют высокий уровень прочности и износотойкости. При нагревании аморфные сплавы могут менять форму.


Будущая бумага может быть тверже алмазов

Это новейшее изобретение создаётся из древесной массы, при этом обладая большей степенью прочности, чем сталь! И гораздо дешевле. Многие учёные считают наноцеллюлозу дешёвой альтернативой палладиевому стеклу и углеродному волокну.


Раковина блюдца

Ранее мы упоминали, что пауки Дарвина плетут нить одного из самых прочных органических материалов на Земле. Тем не менее зубы морского блюдечка оказались ещё сильнее, чем паутины. Зубы лимпетов чрезвычайно жёсткие. Причина этих удивительных характеристик в назначении: сбор водорослей с поверхности горных пород и кораллов. Учёные считают, что в будущем мы могли бы скопировать волокнистую структуру зубов лимпета и использовать её в автомобильной промышленности, кораблях и даже авиационной индустрии.


Ступень ракеты, в которой многие узлы содержат мартенситностареющие стали

Это вещество сочетает в себе высокий уровень прочности и жёсткости без потери эластичности. Стальные сплавы этого типа находят применение в аэрокосмических и промышленно-производственных технологиях.


Кристалл осмия

Осмий чрезвычайно плотен. Его используют при изготовлении вещей, требующих высокого уровня прочности и твёрдости (электрические контакты, ручки для наконечников и т.д.).


Кевларовая каска остановила пулю

Используемый во всём, от барабанов до пуленепробиваемых жилетов, кевлар является синонимом твёрдости. Кевлар - это тип пластика, который обладает чрезвычайно высокой прочностью на растяжение. Фактически она примерно в 8 раз больше, чем у стальной проволоки! Он также может выдерживать температуры около 450 ℃.


Трубы из материала Spectra

Высокоэффективный полиэтилен является действительно прочным пластиком. Эта лёгкая, прочная нить может выдерживать невероятное натяжение и в десять раз прочнее стали. Подобно кевлару, Spectra также используется для баллистических устойчивых жилетов, шлемов и бронетехники.


Гибкий экран из графена

Лист графена (аллотроп углерода) толщиной в один атом в 200 раз сильнее, чем сталь. Хотя графен похож на целлофан, он действительно поражает. Понадобится школьный автобус, балансирующий на карандаше, чтобы проткнуть стандартный лист А1 из этого материала!


Новая технология, способная перевернуть наше представление о прочности

Эта нанотехнология изготовлена ​​из углеродных труб, которые в 50 000 раз тоньше человеческих волос. Это объясняет, почему он в 10 раз легче, чем сталь, но в 500 раз сильнее.


в сателлитах регулярно применяются сплавы из микрорешётки

Самый лёгкий в мире металл, металлическая микрорешётка также является одним из самых лёгких конструкционных материалов на Земле. Некоторые учёные утверждают, что он в 100 раз легче пенополистирола! Пористый, но чрезвычайно сильный материал, он используется во многих областях техники. Boeing упомянул об использовании его при изготовлении самолётов, в основном в полах, сидениях и стенах.


Модель нанотрубок

Углеродные нанотрубки (УНТ) можно описать как «бесшовные цилиндрические полые волокна», которые состоят из одного скатанного молекулярного листа чистого графита. В результате получается очень лёгкий материал. В наномасштабе углеродные нанотрубки имеют прочность в 200 раз больше, чем у стали.


Фантастический аэрографен сложно даже описать!

Также известен как графеновый аэрогель. Представьте себе прочность графена в сочетании с невообразимой лёгкостью. Аэрогель в 7 раз легче воздуха! Этот невероятный материал может полностью восстановиться после сжатия в более чем 90% и может поглощать до 900 раз больше собственного веса в масле. Есть надежда, что этот материал можно будет использовать для ликвидации разливов нефти.

Главный корпус политеха штата Массачусетс

На момент написания этой статьи учёные из Массачусетского технологического института полагали, что они обнаружили секрет максимизации 2-мерной прочности графена в 3-х измерениях. Их пока ещё неназванное вещество может иметь примерно 5% плотности стали, но в 10 раз больше прочности.


Молекулярная структура карбина

Несмотря на то что он является единой цепочкой атомов, карбин имеет удвоенную прочность на растяжение от графена и в три раза большую жёсткость, чем алмаз.


место рождения нитрида бора

Это природное вещество производится в жерле действующих вулканов и на 18% прочнее, чем алмаз. Это одно из двух веществ, встречающихся в природе, которые, как было установлено, в настоящее время превосходят алмазы по твёрдости. Проблема в том, что там не так много этого вещества, и сейчас трудно сказать наверняка, является ли это утверждение на 100% верным.


Метеориты - главные источники лонсдейлита

Также известный как гексагональный алмаз, это вещество состоит из атомов углерода, но они просто расположены по-другому. Наряду с вюрцитом нитридом бора это одно из двух природных веществ тверже алмаза. На самом деле Лондсдейлит 58% тверже! Однако, как и в случае с предыдущим веществом, он находится в относительно малых объёмах. Иногда он возникает, когда графитовые метеориты, сталкиваются с планетой Землёй.

Будущее не за горами, поэтому к концу XXI века можно ожидать появление сверхпрочных и сверхлёгких материалов, которые придут на смену кевлару и алмазам. А пока остаётся только удивляться развитию современных технологий.

Назвать самое твёрдое вещество в мире не так просто, как может показаться поначалу. Дело в том, что твёрдость материалов может меняться в зависимости от некоторых внешних факторов. В частности, она, как ни странно, может оказаться разной, когда изменяется прилагаемая нагрузка.

Многие годы эталоном твёрдости считался алмаз. Впрочем, почему считался? В мире материалов его твёрдость до сих пор остаётся эталоном. Всё, что уступает алмазу в твёрдости, но приближается к нему по этому показателю, называют сверхтвёрдым. А вещества, которые твёрже алмаза, несут гордое наименование «ультра прочных».

И здесь многие читатели могут засомневаться. Ведь ещё не так давно даже в школах учили, что твёрже алмаза в природе ничего нет, и эту истину запомнили многие. Но все истины относительны, как говорят философы. Информация о «самом твёрдом алмазе» в наше время также претерпела изменения.

Так что же твёрже алмаза?

Начнём с того, что алмазы также бывают разными по твёрдости. Твёрдость материалов измеряется гигапаскалями (ГПа). Так вот, у разных алмазов этот показатель может варьировать от 70 до 150 ГПа. Согласитесь, разброс весьма существенный! Верхний предел прочности принадлежит так называемым чёрным алмазам, «карбонадо». В природном виде они обнаружены в крайне малых количествах, в Бразилии и Южной Африке.

Если «обычный» алмаз состоит из одного кристалла, то карбонадо - из огромного количества кристаллов углерода, между которыми остаются пустоты. Установлено, что эти алмазы образуются не при высоких давлениях, а при обычных, и находят их только на поверхности Земли. Распространена теория, что карбонадо занесены на нашу планету астероидом, возникшим в результате взрыва сверхновой звезды.

Итак, карбонадо - существенно твёрже «обычного» алмаза, но это всё же алмаз. А есть вещества, которые вовсе не являются алмазами, но твёрже их, и даже твёрже, чем карбонадо. Вот они:

  • фуллерит;
  • лонсдейлит;
  • вюртцидный нитрид бора.

Это полностью искусственный материал, не встречающийся в природе. Его твёрдость оценена в 310 ГПа. «Карандашик» из этого материала с лёгкостью поцарапает алмазную пластинку. Фуллериты состоят из молекул фуллерена, синтезированного в 1985 году. За это открытие его авторы получили, между прочим, Нобелевскую премию по химии!

Интересно, что долгое время фуллерит был невероятно дорогим и редким веществом, потому что для его синтеза нужны чудовищно высокие давления. Но несколько лет назад российские физики в сотрудничестве с французскими сумели обойти это препятствие. Сейчас вещество уже можно создавать в относительно простых условиях.

Это вещество называют «гексагональным алмазом», потому что оно состоит из графита, только изменённого. В природе очень редко встречается в метеоритных кратерах, но там его твёрдость даже уступает твёрдости карбонадо. Всё дело в примесях, которые обязательно присутствуют в естественных образцах лонсдейлита.

Чтобы это вещество избавилось от примесей, и получило свою максимальную твёрдость, его , в присутствии огромного давления. Твёрдость «чистого» лонсдейлита оценивают в 170 - 220 ГПа.

Не все учёные считают, что он твёрже алмаза. Иными словами, его третье место пока оспаривается. Дело в том, что в обычном состоянии нитрид бора хоть и очень твёрдый, но всё же относится не к ультра прочным, а к сверхтвёрдым веществам.

Всё меняется, когда на его структуру начинают оказывать давление. Атомарные связи этого вещества устроены так, что при повышении давления они «производят перегруппировку», и вот тогда-то нитрид бора становится твёрже алмаза!

Таким образом, определяя самое твёрдое вещество в мире, мы познакомились с интересными веществами, а заодно избавились от привычного мифа о «самом твёрдом алмазе».

В своей деятельности человек использует различные качества веществ и материалов. И совсем не маловажным является их крепость и надежность. О самых твердых материалах в природе и созданных искусственно пойдет речь в этой статье.

Общепринятый эталон

Для определения прочности материала используется шкала Мооса - шкала оценки твердости материала по его реакции на царапание. Для обывателя самый твердый материал - это алмаз. Вы удивитесь, но этот минерал всего лишь где-то на 10-м месте среди самых твердых. В среднем материал считают сверхтвердым, если его показатели выше 40 ГПа. Кроме того, при выявлении самого твердого материала в мире следует учитывать и природу его происхождения. При этом крепость и прочность часто зависят от воздействия внешних факторов на него.

Самый твердый материал на Земле

В данном разделе обратим внимание на химические соединения с необычной кристаллической структурой, которые намного прочнее алмазов и вполне могут его поцарапать. Приведем топ-6 самых твердых материалов созданных человеком, начиная с наименее твердого.

  • Нитрид углерода - бора. Это достижение современной химии имеет показатель прочности 76 ГПа.
  • Графеновый аэрогель (аэрографен) - материал в 7 раз легче воздуха, восстанавливающий форму после 90 % сжатия. Удивительно прочный материал, способный к тому же впитать количество жидкости или даже масла в 900 раз больше собственного веса. Этот материал планируется использовать при разливах нефти.
  • Графен - уникальное изобретение и самый прочный материал во Вселенной. О нем ниже чуть подробнее.
  • Карбин - линейный полимер аллотропного углерода, из которого делают супертонкие (в 1 атом) и суперпрочные трубки. Долгое время никому не удавалось построить такую трубку длиною более чем 100 атомов. Но австрийским ученым из Венского Университета удалось преодолеть этот барьер. Кроме того, если раньше карбин синтезировался в малых количествах и был очень дорогой, то сегодня появилась возможность синтезировать его тоннами. Это открывает новые горизонты для космотехники и не только.
  • Эльбор (кингсонгит, кубонит, боразон) - это наноконструированное соединение, которое сегодня широко применяется в обработке металлов. Твердость - 108 ГПа.

  • Фуллерит - вот какой самый твердый материал на Земле, известный человеку сегодня. Его прочность в 310 ГПа обеспечивается тем, что он состоит не из отдельных атомов, а из молекул. Эти кристаллы с легкостью поцарапают алмаз, как нож масло.

Чудо рук человеческих

Графен - еще одно изобретение человечества на основе аллотропных модификаций углерода. С виду - тонкая пленка толщиной в один атом, но в 200 раз прочнее стали, обладающая исключительной гибкостью.

Именно о графене говорят, что, чтобы его проткнуть, на кончике карандаша должен стоять слон. При этом его электропроводность выше кремния компьютерных чипов в 100 раз. Очень скоро он покинет лаборатории и войдет в повседневную жизнь в виде солнечных панелей, сотовых телефонов и чипов современных компьютеров.

Два очень редких результата аномалий в природе

В природе встречаются очень редкие соединения, которые обладают невероятной прочностью.

  • Нитрид бора - вещество, кристаллы которого имеют специфическую вюрцитную форму. С приложением нагрузок соединения между атомами в кристаллической решетке перераспределяются, повышая прочность на 75 %. Показатель твердости - 114 ГПа. Образуется это вещество при вулканических извержениях, в природе его очень мало.
  • Лонсдейлит (на главном фото) - соединение аллотропного углерода. Материал был обнаружен в воронке метеорита, считается, что он образовался из графита под воздействием условий взрыва. Показатель твердости - 152 ГПа. В природе встречается редко.

Чудеса живой природы

Среди живых существ на нашей планете есть такие, у которых имеется что-то совершенно особенное.

  • Паутина Caerostris darwini. Нить, которую выделяет паук Дарвина, прочнее стали и тверже кевлара. Именно эта паутина была взята учеными НАСА на вооружение при разработке космических защитных костюмов.
  • Зубы моллюска Морское блюдечко - их волокнистая структура сегодня изучается бионикой. Они настолько прочные, что позволяют моллюску отодрать водоросли, вросшие в камень.

Железная береза

Еще одно чудо природы - береза Шмидта. Ее древесина - самый твердый биологического происхождения. Растет она на Дальнем Востоке в заповеднике Кедровая Падь и внесена в Красную Книгу. Прочность сравнима с железом и чугуном. Но при этом не подвержена коррозии и гниению.

Повсеместному использованию древесины которую не пробивают даже пули, препятствует ее исключительная редкость.

Самый твердый из металлов

Это металл бело-голубого цвета - хром. Но его прочность зависит от его чистоты. В природе его содержится 0,02 %, что совсем не так мало. Добывают его из силикатных горных пород. Много хрома содержат и падающие на Землю метеориты.

Он коррозионностойкий, жаропрочный и тугоплавкий. Хром входит в состав многих сплавов (хромистая сталь, нихром), которые широко используются в промышленности и в антикоррозийных декоративных покрытиях.

Вместе прочнее

Один металл - это хорошо, но в некоторых сочетаниях возможно придание сплаву удивительных свойств.

Сверхпрочный сплав титана и золота - единственный крепкий материал, который оказался биосовместимым с живыми тканями. Сплав beta-Ti3Au настолько прочный, что его невозможно измельчить в ступке. Уже сегодня ясно, что это будущее различных имплантатов, искусственных суставов и костей. Кроме того, он может быть применен в буровом производстве, изготовлении спортивного снаряжения и во многих других областях нашей жизни.

Подобными свойствами может обладать и сплав палладия, серебра и некоторых металлоидов. Над этим проектом сегодня работают ученые института Калтека.

Будущее по 20 долларов за моток

Какой самый твердый материал уже сегодня может купить любой обыватель? Всего за 20 долларов можно купить 6 метров ленты Braeön. С 2017 года она поступила в продажу от производителя Дастина Маквильямса. Химический состав и способ производства хранятся в строгом секрете, но качества ее поражают.

Лентой можно скрепить абсолютно все. Для этого ее необходимо обмотать вокруг скрепляемых деталей, разогреть обычной зажигалкой, придать пластичному составу нужную форму и все. После остывания стык выдержит нагрузку в 1 тонну.

И твердый, и мягкий

В 2017 году появилась информация о создании удивительного материала - самого твердого и самого мягкого одновременно. Этот метаматериал изобрели ученые из Университета Мичиган. Им удалось научиться управлять структурой материала и заставлять его проявлять различные свойства.

Например, при использовании его для создания автомобилей при движении кузов будет обладать жесткостью, а при столкновении - мягкостью. Кузов абсорбирует энергию соприкосновения и защитит пассажира.