Вы никогда не пробовали указывать в письмах свой вселенский адрес? Его формат примерно мог бы соответствовать следующему шаблону - дом/улица/город/страна/планета Земля/рукав Ориона/галактика Млечный путь/местная группа галактик/сверхскопление Девы/Вселенная.

Вообще, галактики в нашей Вселенной распространены отнюдь не равномерно - они образуют огромные скопления (кластеры) которые в свою очередь являются частью еще более гигантских суперкластеров, объединяющих в себе уже сотни тысяч галактик. Внешне эти суперкластеры напоминают какие-то исполинские сети, нити которых образованы скоплениями галактик. Как и другие галактики во Вселенной, наш Млечный путь тоже должен являться частью одной из таких мегаструктур.


Но конечно не все так просто. У суперкластеров нет какой-то четкой границы, из-за чего определить их истинные размеры достаточно сложно. Но возможно, что благодаря усилиям группы астрономов, статья о которых была опубликована в сегодняшнем выпуске журнала Nature, наш вселенский адрес можно будет уточнить, добавив в него еще одну позицию.

Вселенная расширяется, что проявляется в т.н. красном смещении. Однако гравитация находящихся рядом друг с другом галактик оказывается влияние на их скорости, и направление движения. Используя радиотелескопы, исследователи измерили местоположение и скорость восьми тысяч галактик. Благодаря этому, им удалось составить карту “космических потоков” - своеобрахных путей “миграции” галактик. Как оказалось, Млечный путь является частью огромного суперкластера, протяженностью 520 миллионов световых лет, в которую входит свыше ста тысяч галактик. Новооткрытую структуру назвали Ланиакея - в переводе с гавайского - Необъятные небеса.

Цвета на карте обозначают распределение галактик. Красный соответствует участкам с наибольшей плотностью галактик, синий - относительно пустынным областям. Разумеется, нельзя забывать что наблюдаемые нами галактики составляют лишь малый процент от массы вселенной в то время как ее основная часть приходится на темную материю, которую мы можем обнаружить лишь по косвенным признакам.

Синяя точка - это находящееся на задворка Ланиакеи местное скопление галактик, где находится наш Млечный путь.

Белые линии показывают потоки, вдоль которых галактики Ланиакеи двигаются по направлению к Великому аттрактору - гравитационной аномалии, находящийся от нас на расстоянии 250 миллионов световых лет. К сожалению, мы не можем наблюдать Великий аттрактор напрямую, так как он находится в “зоне избегания”, закрытой от наблюдений плоскостью Млечного пути с большим количеством пыли. Но мы можем измерить эффект, который он оказывает на движение галактик. По всей видимости, Аттрактор представляет собой своеобразное ядро Ланиакеи, к которому образующие ее галактики стремятся, словно вода, текущая вниз по нисходящему пути в долину.

Оранжевая линия показывает границу Ланиакеи. Ее можно условно сравнить с водоразделом - за ее пределами, космические потоки меняют свое направление и устремляются к центру соседних суперкластеров Волос Вероники, Персеи-Рыбы и Шепли.

В завершение могу лишь еще сказать, что наша Вселенная поистине огромна и полна чудес, о большинство из которых мы даже и не подозреваем. Интересно, сколько существует еще более масштабных вселенских структур, составной частью которых является Ланиакея?

На протяжении всей истории науки в круг интересов землеведения входили разработки представлений об окружающем человека мире - планете Земля, Солнечной системе, Вселенной. Первой математически обоснованной моделью мироздания была геоцентрическая система К.Птолемея (165-87 гг. до н.э.), которая правильно для того времени отображала доступную для непосредственного наблюдения часть мира. Только через 1500 лет утвердилась гелиоцентрическая модель Солнечной системы Н. Коперника (1473-1543).

Успехи физической теории и астрономии конца XIX в. и появление первых оптических телескопов привели к созданию представлений о неизменной Вселенной. Разработка теории относительности и ее приложение к решению космологических парадоксов (гравитационного, фотометрического) создали релятивистскую теорию Вселенной, которая первоначально была представлена А. Эйнштейном как статическая модель. В 1922-1924 гт. А.А. Фридманом были получены решения уравнений общей теории относительности для вещества, равномерно заполняющего все пространство (модель однородной изотропной Вселенной), которые показали нестационарность Вселенной - она должна расширяться или сжиматься. В 1929 г. Э.Хаббл обнаружил расширение Вселенной, опровергнув представление о ее незыблемости. Теоретические результаты А.А.Фридмана и Э.Хаббла позволили ввести понятие «начала» в эволюцию Вселенной и объяснить ее структуру.

В 1946-1948 гг. Г. Гамов разработал теорию «горячей» Вселенной, согласно которой в начале эволюции вещество Вселенной имело температуру и плотность, недостижимые экспериментально. В 1965 г. было открыто реликтовое микроволновое фоновое излучение, имевшее изначально очень высокую температуру, что экспериментально подтвердило теорию Г. Гамова.

Так расширялись наши представления о мире в пространственном и временном отношении. Если в течение длительного времени Вселенная рассматривалась как среда, включающая небесные тела различного ранга, то согласно современным представлениям, Вселенная - это упорядоченная система, развивающаяся однонаправленно. Наряду с этим возникло допущение, что Вселенная не обязательно исчерпывает понятие материального мира и возможно существуют другие Вселенные, где не обязательно действуют известные законы мироздания.



Вселенная

Вселенная - это окружающий нас материальный мир, безграничный во времени и пространстве. Границы Вселенной скорее всего будут раздвигаться по мере появления новых возможностей непосредственного наблюдения, т.е. они относительны для каждого момента времени.

Вселенная является одним из конкретно-научных объектов экспериментального исследования. Предполагается, что фундаментальные законы естествознания верны для всей Вселенной.

Состояние Вселенной . Вселенная - это нестационарный объект, состояние которого зависит от времени. Согласно господствующей теории, в настоящее время Вселенная расширяется: большинство галактик (за исключением ближайших к нашей) удаляются от нас и друг относительно друга. Скорость удаления (разбегания) тем больше, чем дальше находится галактика - источник излучения. Эта зависимость описывается уравнением Хаббла:

где v - скорость удаления, км/с; R - расстояние до галактики, св. год; Н - коэффициент пропорциональности, или постоянная Хаббла, Н= 15×10 -6 км/(с×св. год). Установлено, что скорость разбегания возрастает.

Одним из доказательств расширения Вселенной служит «красное смещение спектральных линий» (эффект Доплера): спектральные линии поглощения в удаляющихся от наблюдателя объектах всегда смещаются в сторону длинных (красных) волн спектра, а приближающихся - коротких (голубых).

Спектральным линиям поглощения от всех галактик присуще смещение в красную сторону, а значит, имеет место расширение.

Плотность вещества Вселенной. Распределение плотности вещества в отдельных частях Вселенной различается более чем на 30 порядков. Самая высокая плотность, если не принимать во внимание микромир (например, атомное ядро), присуща нейтронным звездам (около 10 14 г/см 3), самая низкая (10 -24 г/см 3) - Галактике в целом. По данным Ф.Ю.Зигеля, нормальная плотность межзвездного вещества в пересчете на атомы водорода составляет одну молекулу (2 атома) в 10 см 3 , в уплотненных облаках - туманностях она достигает нескольких тысяч молекул. Если концентрация превышает 20 атомов водорода в 1 см 3 , то начинается процесс сближения, перерастающий в аккрецию (слипание).

Вещественный состав. Из общей массы вещества Вселенной только около 1/10 является видимым (светящимся), остальные 9/10 - невидимое (несветящееся) вещество. Видимое вещество, о составе которого можно уверенно судить по характеру спектра излучения, представлено в основном водородом (80-70%) и гелием (20-30%). Других химических элементов в светящейся массе вещества настолько мало, что ими можно пренебречь. Во Вселенной не обнаружено значительного количества антивещества, за исключением малой доли антипротонов в космических лучах.

Вселенная заполнена электромагнитным излучением, которое называют реликтовым, т.е. оставшимся от ранних стадий эволюции Вселенной.

Однородность, изотропность и структурность. Вглобальном масштабе Вселенная считается изотропной и однородной. Признаком изотропности, т.е. независимости свойств объектов от направления в пространстве, является равномерность распределения реликтового излучения. Самые точные современные измерения не обнаружили отклонений в интенсивности этого излучения в разных направлениях и в зависимости от времени суток, что одновременно свидетельствует о большой однородности Вселенной.

Другой особенностью Вселенной является неоднородность и структурность (дискретность) в малом масштабе. В глобальном масштабе в сотни мегапарсек вещество Вселенной можно рассматривать как однородную непрерывную среду, частицами которой являются галактики и даже скопления галактик. При более детальном рассмотрении отмечается структурированность Вселенной. Структурными элементами Вселенной являются космические тела, прежде всего звезды, образующие звездные системы разного ранга: галактика - скопление галактик - Метагалактика, Для них характерны локализация в пространстве, движение вокруг общего центра, определенная морфология и иерархия.

Галактика Млечного Пути состоит из 10 11 звезд и межзвездной среды. Она принадлежит к спиралевидным системам, которые имеют плоскость симметрии (плоскость диска) и ось симметрии (ось вращения). Сплюснутость диска Галактики, наблюдаемая визуально, свидетельствует о значительной скорости ее вращения вокруг оси. Абсолютная линейная скорость ее объектов постоянна и равна 220-250 км/с (возможно, что она возрастает для очень удаленных от центра объектов). Период вращения Солнца вокруг центра Галактики составляет 160-200 млн лет (в среднем 180 млн лет) и называется галактическим годом.

Эволюция Вселенной. В соответствии с моделью расширяющейся Вселенной, разработанной А.А.Фридманом на основании общей теории относительности А. Эйнштейна, установлено, что:

1) в начале эволюции Вселенная пережила состояние космологической сингулярности, когда плотность ее вещества равнялась бесконечности, а температура превосходила 10 28 К (при плотности свыше 10 93 г/см 3 вещество обладает неизученными квантовыми свойствами пространства-времени и тяготения);

2) вещество, находящееся в сингулярном состоянии, подверглось внезапному расширению, которое можно сравнить со взрывом («Большой взрыв»);

3) в условиях нестационарности расширяющейся Вселенной плотность и температура вещества убывают во времени, т.е. в процессе эволюции;

4) при температуре порядка 10 9 К осуществлялся нуклеосинтез, в результате которого произошла химическая дифференциация вещества и возникла химическая структура Вселенной;

5) исходя из этого Вселенная не могла существовать вечно и ее возраст определяют от 13 до 18 млрд лет.

Солнечная система

Солнечная система - это Солнце и совокупность небесных тел: 9 планет и их спутники (на 2002 г. их число составило 100), множество астероидов, комет и метеоров, которые вращаются вокруг Солнца или заходят (как кометы) в Солнечную систему. Основные сведения об объектах Солнечной системы содержат рис. 3.1 и табл. 3.1.

Таблица 3.1. Некоторые физические параметры планет Солнечной системы

Объект Солнечной системы Расстояние от Солнца радиус, км число земных радиусов масса, 10 23 кг масса относительно Земли средняя плотность, г/см 3 период обращения по орбите, число земных суток период обращения вокруг своей оси число спутников (лун) альбедо ускорение силы тяженсти на экваторе, м/с 2 скорость отрыва от притяжения планеты, м/с наличие и состав атмосферы, % средняя температура на поверхности, °С
млн км а.е.
Солнце - 695 400 1,989×10 7 332,80 1,41 25-36 9 - 618,0 Отсутствует
Меркурий 57,9 0,39 0,38 3,30 0,05 5,43 59 сут 0,11 3,70 4,4 Отсутствует
Венера 108,2 0,72 0,95 48,68 0,89 5,25 243 сут 0,65 8,87 10,4 СО 2 , N 2 , Н 2 О
Земля 149,6 1,0 1,0 59,74 1,0 5,52 365,26 23 ч 56 мин 4с 0,37 9,78 11,2 N 2 , O 2 , СО 2 , Аr, Н 2 О
Луна 1,0 0,27 0,74 0,0123 3,34 29,5 27 ч 32 мин - 0,12 1,63 2,4 Очень разряженная -20
Марс 227,9 1,5 0,53 6,42 0,11 3,95 24 ч 37 мин 23 с 0,15 3,69 5,0 СО 2 (95,3), N 2 (2,7), Аr (1,6), О 2 (0,15), Н 2 О (0,03) -53
Юпитер 778,3 5,2 18986,0 1,33 11,86 лет 9 ч 30 мин 30 с 0,52 23,12 59,5 Н (77), Не (23) -128
Сатурн 1429,4 9,5 5684,6 0,69 29,46 лет 10 ч 14 мин 0,47 8,96 35,5 Н, Не -170
Уран 2871,0 19,2 25 362 868,3 1,29 84,07 лет 11 ч3 0,51 8,69 21,3 Н (83), Не (15), СН 4 (2) -143
Нептун 4504,3 30,1 24 624 1024,3 1,64 164,8 лет 16ч 0,41 11,00 23,5 Н, Не, СН 4 -155
Плутон 5913,5 39,5 0,18 0,15 0,002 2,03 247,7 6,4 сут 0,30 0,66 1,3 N 2 , CO, NH 4 -210

Солнце представляет собой раскаленный газовый шар, в составе которого обнаружено около 60 химических элементов (табл. 3.2). Солнце вращается вокруг своей оси в плоскости, наклоненной под углом 7°15" к плоскости земной орбиты. Скорость вращения поверхностных слоев Солнца различна: на экваторе период обращения равен 25,05 суток, на широте 30° - 26,41 суток, в полярных областях - 36 суток. Источником энергии Солнца являются ядерные реакции, преобразующие водород в гелий. Количество водорода обеспечит сохранение его светимости на десятки миллиардов лет. На Землю поступает всего одна двухмиллиардная часть солнечной энергии.

Солнце имеет оболочечное строение (рис. 3.2). В центре выделяют ядро с радиусом примерно 1/3 солнечного, давлением 250 млрд атм, температурой более 15 млн К и плотностью 1,5×10 5 кг/м 3 (в 150 раз больше плотности воды). В ядре генерируется почти вся энергия Солнца, которая передается через зону излучения, где свет многократно поглощается веществом и излучается вновь. Выше располагается зона конвекции (перемешивания), в которой вещество приходит в движение вследствие неравномерности переноса тепла (процесс, аналогичный переносу энергии в кипящем чайнике). Видимая поверхность Солнца образована его атмосферой. Ее нижняя часть мощностью около 300 км, излучающая основную часть радиации, называется фотосферой. Это самое «холодное» место на Солнце с температурой, уменьшающейся от 6000 до 4500 К в верхних слоях. Фотосфера образована гранулами диаметром 1000- 2000км, расстояние между которыми от 300 до 600 км. Гранулы создают общий фон для различных солнечных образований - протуберанцев, факелов, пятен. Над фотосферой до высоты 14 тыс. км располагается хромосфера. Во время полных лунных затмений она видна как розовый нимб, окружающий темный диск. Температура в хромосфере увеличивается и в верхних слоях достигает нескольких десятков тысяч градусов. Самая внешняя и самая разреженная часть солнечной атмосферы - солнечная корона - простирается на расстояния в несколько десятков солнечных радиусов. Температура здесь превышает 1 млн град.

Таблица 3.2. Химический состав Солнца и планет земной группы, % (по А. А. Маракушеву, 1999)

Элемент Солнце Меркурий Венера Земля Марс
Si 34,70 16,45 33,03 31,26 36,44
Fe 30,90 63,07 30,93 34,50 24,78
Mg 27,40 15,65 31,21 29,43 34,33
Na 2,19 - - - -
Al 1,74 0,97 2,03 1,90 2,29
Ca 1,56 0,88 1,62 1,53 1,73
Ni 0,90 2,98 1,18 1,38 0,43

Рис. 3.2. Строение Солнца

Планеты Солнечной системы подразделяют на две группы: внутренние, или планеты земной группы - Меркурий, Венера, Земля, Марс, и внешние, или планеты-гиганты - Юпитер, Сатурн, Уран, Нептун и Плутон. Предполагаемый вещественный состав планет показан на рис. 3.3.

Планеты земной группы. Внутренние планеты имеют относительно небольшие размеры, высокую плотность и внутреннюю дифференциацию вещества. Их отличает повышенная концентрация углерода, азота и кислорода, недостаток водорода и гелия. Для планет земной группы характерна тектоническая асимметрия: структура коры северных полушарий планет отличается от южных.

Меркурий - самая близкая к Солнцу планета. Среди планет Солнечной системы ее отличает самая вытянутая эллиптическая орбита. Температура на освещенной стороне составляет 325-437°С, на ночной - от -123 до -185°С. Американский космический корабль «Маринер-10» в 1974 г. обнаружил на Меркурии разреженную атмосферу (давление 10 -11 атм), состоящую из гелия и водорода в соотношении 50:1. Магнитное поле Меркурия в 100 раз слабее земного, что в значительной степени связано с медленным вращением планеты вокруг своей оси. Поверхность Меркурия имеет много общего с поверхностью Луны, но преобладает материковый рельеф. Наряду с похожими на лунные кратерами разных размеров отмечены отсутствующие на Луне эскарпы - обрывы, высотой 2-3 км и протяженностью в сотни и тысячи километров.

Рис. 3.3. Строение и предполагаемый вещественный состав планет (по Г. В.Войткевичу): а - земной группы: 1, 2, 3 - силикатное, металлическое, сульфидметаллическое вещества соответственно; б - гигантов: 1 - молекулярный водород; 2 - металлический водород; 3 - водяной лед; 4 - ядро, сложенное каменным или железокаменным материалом

Масса Меркурия составляет 1/18 массы Земли. Несмотря на небольшие размеры, Меркурий имеет необычайно высокую плотность (5,42 г/см 3), близкую к плотности Земли. Высокая плотность указывает на наличие горячего, и вероятно, расплавленного, металлического ядра, на которое приходится около 62% массы планеты. Ядро окружено силикатной оболочкой мощностью около 600 км. О химическом составе поверхностных пород и недр Меркурия можно судить лишь по косвенным данным. Отражательная способность меркурианского реголита свидетельствует о том, что он состоит из тех же пород, которые слагают лунный грунт.

Венера оборачивается вокруг своей оси еще медленнее (за 244 земных дня), чем Меркурий, причем в обратном направлении, поэтому Солнце на Венере восходит на западе и заходит на востоке. Масса Венеры составляет 81% земной массы. Вес предметов на Венере только на 10% меньше их веса на Земле. Полагают, что кора планеты маломощная (15-20 км) и ее основная часть представлена силикатами, сменяющимися на глубине 3224 км железным ядром. Рельеф планеты расчлененный - горные цепи высотой до 8 км чередуются с кратерами диаметром в десятки километров (максимально до 160 км) и глубиной до 0,5 км. Обширные выровненные пространства покрыты каменистыми россыпями остроугольных обломков. Вблизи экватора обнаружена гигантская линейная впадина длиной до 1500 км и шириной 150 км при глубине до 2 км. Венера не имеет дипольного магнитного поля, что объясняют ее высокой температурой. На поверхности планеты температура равна (468+7)°С, а на глубине, очевидно, - 700-800°С.

Для Венеры характерна очень плотная атмосфера. На поверхности атмосферное давление составляет не менее 90-100 атм, что соответствует давлению земных морей на глубине 1000 м. По химическому составу атмосфера состоит в основном из диоксида углерода с примесью азота, водяных паров, кислорода, серной кислоты, хлористого и фтористого водорода. Считают, что атмосфера Венеры примерно соответствует земной на ранних этапах ее становления (3,8-3,3 млрд лет назад). Облачный слой атмосферы простирается с высоты 35 км до 70 км. Нижний ярус облаков на 75-80% состоит из серной кислоты, кроме того, присутствуют плавиковая и соляная кислоты. Находясь на 50 млн км ближе Земли к Солнцу, Венера получает в два раза больше тепла, чем наша планета - 3,6 кал/(см 2 ×мин). Эту энергию аккумулирует углекислая атмосфера, обусловливающая огромный парниковый эффект и высокие температуры венерианской поверхности - горячей и, по-видимому, сухой. Космическая информация свидетельствует о своеобразном свечении Венеры, что, вероятно, объясняется высокими температурами поверхностных пород.

Для Венеры характерна сложная динамика облаков. Вероятно, на высоте около 40 км существуют мощные полярные вихри и сильные ветры. У поверхности планеты ветры слабее - около 3 м/с (очевидно, из-за отсутствия значительных перепадов приповерхностной температуры), что подтверждается отсутствием пыли в местах посадок спускаемых аппаратов станций «Венера». Плотная атмосфера долгое время не позволяла судить о породах венерианской поверхности. Анализ естественной радиоактивности изотопов урана, тория и калия в грунтах показал результаты, близкие к земным базальтам и частично гранитам. Поверхностные породы обладают намагниченностью.

Марс расположен на 75 млн км дальше от Солнца, чем Земля, поэтому марсианские сутки длиннее земных, а солнечной энергии к нему поступает в 2,3 раза меньше по сравнению с Землей. Период обращения вокруг оси почти как у Земли. Наклон оси к плоскости орбиты обеспечивает смену сезонов года и наличие «климатических» поясов - жаркого экваториального, двух умеренных и двух полярных. В связи с малым количеством поступающей солнечной энергии контрасты тепловых поясов и сезонов года выражены слабее земных.

Плотность атмосферы Марса в 130 раз меньше, чем Земли и равна всего 0,01 атм. В состав атмосферы входят диоксид углерода, азот, аргон, кислород, пары воды. Суточные колебания температуры превышают 100°С: на экваторе днем - около 10-20°, а на полюсах - ниже -100°С. Большие различия температуры наблюдаются между дневной и ночной сторонами планеты: от 10-30 до -120°С. На высоте около 40 км Марс окружен озоновым слоем. Для Марса отмечено слабое дипольное магнитное поле (на экваторе оно в 500 раз слабее земного).

Поверхность планеты изрыта многочисленными кратерами вулканического и метеоритного происхождения. Перепады высот в среднем составляют 12-14 км, но огромная кальдера вулкана «Никс Олимпикс» (Снега Олимпа) поднимается на 24 км. Диаметр ее основания равен 500 км, а кратера - 65 км. Некоторые вулканы являются действующими. Особенность планеты - наличие огромных тектонических трещин (например, каньон Маринер длиной 4000 км и шириной 2000 км при глубине до 6 км), напоминающих земные грабены и морфоскульптуры, соответствующие речным долинам.

На снимках Марса видны участки, имеющие светлую окраску («материковые» районы, сложенные, очевидно, гранитами), желтый цвет («морские» районы, сложенные, очевидно, базальтами) и белоснежный облик (ледниковые полярные шапки). Наблюдения за полярными районами планеты установили изменчивость очертаний ледяных массивов. По предположениям ученых, ледниковые полярные шапки сложены замерзшим диоксидом углерода и, возможно, водяным льдом. Красноватый цвет поверхности Марса обусловлен, вероятно, гематитизацией и лимонитизацией (окислением железа) горных пород, которые возможны при наличии воды и кислорода. Очевидно, они поступают изнутри при прогревании поверхности в дневное время или с газовыми эксгаляциями, которые растапливают мерзлоту.

Исследование горных пород показало следующее соотношение химических элементов (%): кремнезем - 13-15, оксиды железа - 12-16, кальций - 3-8, алюминий - 2-7, магний - 5, сера - 3, а также калий, титан, фосфор, хром, никель, ванадий. Грунт Марса по составу сходен с некоторыми земными вулканическими породами, но обогащен соединениями железа и обеднен кремнеземом. Органических образований на поверхности не обнаружено. В приповерхностных слоях планеты (с глубины 50 см) грунты скованы вечной мерзлотой, простирающейся вглубь до 1 км. В недрах планеты температура достигает 800-1500°С. Предполагают, что на небольшой глубине температура должна составлять 15-25°С, а вода может находиться в жидком состоянии. В этих условиях могут существовать простейшие живые организмы, следы жизнедеятельности которых пока не найдены.

Марс обладает двумя спутниками - Фобосом (27х21х19 км) и Деймосом (15x12x11 км), которые, очевидно, являются осколками астероидов. Орбита первого проходит в 5000 км от планеты, второго - в 20 000 км.

В табл. 3.2 показан химический состав планет земной группы. Из таблицы видно, что для Меркурия характерны самые высокие концентрации железа и никеля и самые низкие кремния и магния.

Планеты-гиганты. Юпитер, Сатурн, Уран и Нептун заметно отличаются от планет земной группы. В планетах-гигантах, особенно в ближайших к Солнцу, сосредоточен полный момент количества движения Солнечной системы (в единицах Земли): Нептун - 95, Уран - 64, Сатурн - 294, Юпитер - 725. Удаленность этих планет от Солнца позволила им сохранить значительное количество первичного водорода и гелия, потерянных планетами земной группы под воздействием «солнечного ветра» и из-за недостаточности собственных гравитационных сил. Хотя плотность вещества внешних планет невелика (0,7-1,8 г/см 3), объемы и массы их огромны.

Самой крупной планетой является Юпитер, по объему в 1300 раз, а по массе более чем в 318 раз превосходящий Землю. За ним следует Сатурн, масса которого в 95 раз превышает массу Земли. В этих планетах сосредоточено 92,5% массы всех планет Солнечной системы (71,2% у Юпитера и 21,3% у Сатурна). Замыкают группу внешних планет два близнеца-гиганта - Уран и Нептун. Важной особенностью является наличие у этих планет каменных спутников, что, вероятно, свидетельствует об их внешнем космическом происхождении и не связано с дифференциацией вещества самих планет, сформированных сгущениями преимущественно в газообразном состоянии. Многие исследователи считают, что центральные части этих планет твердые.

Юпитер с характерными пятнами и полосами на поверхности, которые параллельны экватору и имеют изменчивые очертания, является самой доступной для исследования планетой. Масса Юпитера лишь на два порядка меньше солнечной. Ось почти перпендикулярна к плоскости орбиты.

Юпитер обладает мощной атмосферой и сильным магнитным полем (в 10 раз сильнее земного), что определяет наличие вокруг планеты мощных радиационных поясов из протонов и электронов, захваченных магнитным полем Юпитера из «солнечного ветра». Атмосфера Юпитера, кроме молекулярного водорода и гелия, содержит разнообразные примеси (метан, аммиак, окиси углерода, пары воды, молекулы фосфина, цианистого водорода и др.). Присутствие этих веществ, возможно, является следствием ассимиляции разнородного материала из Космоса. Расслоенная водородно-гелиевая масса достигает мощности 4000 км и, вследствие неравномерного распределения примесей, образует полосы и пятна.

Огромная масса Юпитера предполагает наличие мощного жидкого или полужидкого ядра астеносферного типа, которое может быть источником вулканизма. Последнее, по всей вероятности, объясняет существование Большого Красного Пятна, наблюдения за которым ведутся с XVII в. При наличии полужидкого или твердого тела-ядра на планете должен быть сильный парниковый эффект.

По мнению некоторых ученых, Юпитер выполняет в Солнечной системе роль своеобразного «пылесоса» - его мощное магнитно-гравитационное поле перехватывает блуждающие во Вселенной кометы, астероиды и другие тела. Наглядным примером явился захват и падение на Юпитер кометы «Шумейкер-Леви-9» в 1994 г. Сила притяжения оказалась настолько большой, что комета раскололась на отдельные обломки, которые со скоростью свыше 200 тыс. км/ч врезались в атмосферу Юпитера. Каждый взрыв достигал мощности в миллионы мегатонн, а наблюдатели с Земли видели пятна взрывов и расходящиеся волны возбужденной атмосферы.

На начало 2003 г. число спутников Юпитера достигло 48, треть из которых имеет собственные имена. Для многих из них характерно обратное вращение и малые размеры - от 2 до 4 км. Четыре самых крупных спутника - Ганимед, Каллисто, Ио, Европа - носят название Галилеевых. Спутники сложены твердым каменным материалом, видимо, силикатного состава. На них обнаружены действующие вулканы, следы льда и, возможно, жидкостей, в том числе воды.

Сатурн, «окольцованная» планета, представляет не меньший интерес. Его средняя плотность, рассчитанная по видимому радиусу, очень низкая - 0,69 г/см 3 (без атмосферы - около 5,85 г/см 3). Мощность атмосферного слоя оценивается в 37-40 тыс. км. Отличительной особенностью Сатурна является кольцо, расположенное выше облачного слоя атмосферы. Его диаметр составляет 274 тыс. км, что почти вдвое больше диаметра планеты, мощность - около 2 км. По наблюдениям с космических станций установлено, что кольцо состоит из ряда мелких колец, находящихся на разном расстоянии друг от друга. Вещество колец представлено твердыми обломками, очевидно, силикатных пород и ледяных глыб размером от пылинки до нескольких метров. Атмосферное давление на Сатурне в 1,5 раза больше земного, а средняя температура поверхности около -180°С. Магнитное поле планеты по напряженности почти вдвое меньше земного, а его полярность противоположна полярности земного поля.

Вблизи Сатурна обнаружено 30 спутников (по состоянию на 2002 г.). Самый далекий из них - Феба (диаметр ПО км) находится в 13 млн км от планеты и оборачивается вокруг нее за 550 дней. Самый близкий - Мимас (диаметр 195 км) располагается в 185,4 тыс. км и совершает полный оборот за 2266 час. Загадкой является присутствие углеводородов на спутниках Сатурна, а возможно, и на самой планете.

Уран. Ось вращения Урана расположена почти в плоскости орбиты. Планета обладает магнитным полем, полярность которого противоположна земной, а напряженность меньше земной.

В плотной атмосфере Урана, мощность которой 8500 км, обнаружены кольцевые образования, пятна, вихри, струйные течения, что свидетельствует о неспокойной циркуляции воздушных масс. Направления ветров в основном совпадают с вращением планеты, но в высоких широтах их скорость увеличивается. Зеленовато-голубой цвет холодной атмосферы Урана может быть обусловлен наличием радикалов [ОН - ]. Содержание гелия в атмосфере достигает 15%, в нижних слоях обнаружены метановые облака.

Вокруг планеты обнаружены 10 колец шириной от нескольких сотен метров до нескольких километров, состоящих из частиц около 1 м в диаметре. Внутри колец движутся каменные глыбы неправильной формы и диаметром 16-24 км, названные спутниками-«пастухами» (вероятно, это астероиды).

Среди 20 спутников Урана пять выделяются значительными размерами (от 1580 до 470 км в диаметре), остальные - менее 100 км. Все они похожи на астероиды, захваченные гравитационным полем Урана. На шаровидной поверхности некоторых из них замечены гигантские линейные полосы - трещины, возможно, следы скользящих ударов метеоритов.

Нептун - самая удаленная от Солнца планета. Облака атмосферы образованы в основном метаном. В верхних слоях атмосферы наблюдаются потоки ветра, несущегося со сверхзвуковой скоростью. Это означает существование в атмосфере градиентов температуры и давления, вызванных, видимо, внутренним разогревом планеты.

Нептун имеет 8 каменных спутников, три из которых значительных размеров: Тритон (диаметр 2700 км), Нерида (340 км) и Протей (400 км), остальные меньше - от 50 до 190 км.

Плутон - самая дальняя из планет, открыта в 1930 г., не принадлежит к планетам-гигантам. Его масса в 10 раз меньше земной.

Быстро вращаясь вокруг оси, Плутон имеет сильно вытянутую эллиптическую орбиту, и потому с 1969 по 2009 г. он будет находиться ближе к Солнцу, чем Нептун. Этот факт может быть дополнительным доказательством его «непланетной» природы. Вполне вероятно, что Плутон принадлежит к телам из пояса Койпера, открытого в 90-х годах XX в., который является аналогом пояса астероидов, но за орбитой Нептуна. В настоящее время обнаружено около 40 таких тел диаметром от 100 до 500 км, очень тусклых и почти черных, с альбедо 0,01 - 0,02 (у Луны альбедо - 0,05). Плутон, возможно, одно из них. Поверхность планеты, очевидно, ледяная. У Плутона есть единственный спутник Харон диаметром 1190 км, с орбитой, проходящей в 19 тыс. км от него и периодом обращения 6,4 земных суток.

По характеру движения планеты Плутон исследователи предполагают наличие еще одной крайне удаленной и малой (десятой) планеты. В конце 1996 г. появилось сообщение о том, что астрономы из Гавайской обсерватории открыли состоящее из ледяных глыб небесное тело, которое вращается на околосолнечной орбите за пределами Плутона. Эта малая планета пока не имеет названия и зарегистрирована под номером 1996TL66.

Луна - спутник Земли, вращающийся от нее на расстоянии 384 тыс. км, чьи размеры и строение приближают его к планетам. Периоды осевого и сидерического вращения вокруг Земли почти равны (см. табл. 3.1), из-за чего Луна обращена к нам всегда одной стороной. Вид Луны для земного наблюдателя постоянно меняется в соответствии с ее фазами - новолуние, первая четверть, полнолуние, последняя четверть. Период полной смены лунных фаз называется синодическим месяцем, который в среднем равен 29,53 земных суток. Он не совпадает с сидерическим (звездным) месяцем, составляющим 27,32 суток, за который Луна делает полный оборот вокруг Земли и одновременно - оборот вокруг своей оси по отношению к Солнцу. В новолуние Луна находится между Землей и Солнцем и не видна с Земли. В полнолуние Земля находится между Луной и Солнцем и Луна видна как полный диск. С позициями Солнца, Земли и Луны связаны солнечные и лунные затмения - положения светил, при которых тень, отбрасываемая Луной, падает на поверхность Земли (солнечное затмение), или тень, отбрасываемая Землей, падает на поверхность Луны (лунное затмение).

Лунная поверхность представляет собой чередование темных участков - «морей», соответствующих плоским равнинам, и светлых участков - «материков», образованных возвышенностями. Перепады высот достигают 12-13 км, самые высокие вершины (до 8 км) расположены у Южного полюса. Многочисленные кратеры размером от нескольких метров до сотен километров имеют метеоритное или вулканическое происхождение (в кратере Альфонс в 1958 г. было обнаружено свечение центральной горки и выделение углерода). Интенсивные вулканические процессы, свойственные Луне на ранних этапах развития, сейчас ослаблены.

Образцы верхнего слоя лунного грунта - реголита, взятые советскими космическими аппаратами и американскими астронавтами, показали, что на поверхность Луны выходят магматические породы основного состава - базальты и анортозиты. Первые характерны для «морей», вторые - для «материков». Низкая плотность реголита (0,8-1,5 г/см 3) объясняется его большой пористостью (до 50%). Средняя плотность более темных «морских» базальтов составляет 3,9 г/см 3 , а более светлых «континентальных» анортозитов - 2,9 г/см 3 , что выше средней плотности горных пород земной коры (2,67 г/см 3). Средняя плотность пород Луны (3,34 г/см 3) ниже средней плотности пород Земли (5,52 г/см 3). Предполагают однородное строение ее недр и, по-видимому, отсутствие значительного металлического ядра. До глубины 60 км лунная кора сложена теми же породами, что и поверхность. У Луны не обнаружено собственного дипольного магнитного поля.

По химическому составу лунные породы близки к земным и характеризуются следующими показателями (%): SiO 2 - 49,1 - 46,1; MgO - 6,6-7,0; FeO - 12,1-2,5; А1 2 О 3 - 14,7-22,3; CaO -12,9- 18,3; Na 2 O - 0,6-0,7; ТiO 2 - 3,5-0,1 (первые цифры для грунта лунных «морей», вторые - для материкового грунта). Близкое сходство пород Земли и Луны может указывать на то, что оба небесных тела образовались на сравнительно небольшом расстоянии друг от друга. Луна формировалась в околоземном «спутниковом рое» примерно 4,66 млрд лет назад. Основная масса железа и легкоплавких элементов в это время уже была захвачена Землей, что, вероятно, и определило отсутствие у Луны железного ядра.

Небольшая масса позволяет Луне удерживать лишь очень разреженную атмосферу, состоящую из гелия и аргона. Атмосферное давление на Луне равно 10 -7 атм в дневное и ~10 -9 атм в ночное время. Отсутствие атмосферы определяет большие суточные колебания температуры поверхности - от -130 до 180С.

Исследование Луны началось 2 января 1959 г., когда в сторону Луны стартовала первая советская автоматическая станция «Луна-1». Первыми людьми были американские астронавты Нейл Армстронг и Эдвин Олдрин, прилунившиеся 21 июля 1969 г. на космическом корабле «Аполлон-11».

А вы знаете, что нам повезло родиться не только в «зоне жизни» звезды, но и всей галактики?

Как выглядят со стороны другие звезды и мы уже говорил, а как видел бы нашу солнечную систему и нашу звезду-Солнце, сторонний наблюдатель?

Судя по анализу окружающего космического пространства, Солнечная система в настоящее время движется через местное , состоящее в основном из водорода и некоторой доли гелия. Предполагается, что это местное межзвездное облако раскинулось на расстоянии в 30 световых лет, что в пересчете на километры, составляет что-то около 180 млн. км.

В свою очередь, «наше» облако находится внутри вытянутого газового облака, так называемого местного пузыря , образованного частицами древних сверхновых звезд. Пузырь растянут на 300 световых лет и находится на внутреннем крае одного из спиральных рукавов .

Впрочем, как уже говорилось мною ранее, наше точное положение относительно рукавов Млечного пути нам неизвестно — как не крути, у нас просто нет возможности посмотреть на него со стороны и оценить ситуацию.

Что поделать: если практически в любом месте планеты вы можете определить ваше местоположение с достаточной точностью, то, если вы имеете дело с галактическими масштабами, это невозможно — наша галактика имеет 100 тыс. световых лет в поперечнике. Даже при изучении космического пространства вокруг нас многое остается неясно.

Если мы воспользуемся системой межгалактического позиционирования, мы вероятно обнаружим себя между верхней и нижней частью Млечного пути и на полпути между центром и внешним краем галактики. Согласно одной из гипотез мы поселились в довольно «престижном районе» галактики.

Существует предположение, что звезды, находящиеся на определенном расстоянии от центра галактики, находятся в так называемой обитаемой зоне , то есть там, где теоретически возможна жизнь. А жизнь возможна лишь в правильном месте с правильной температурой — на планете, расположенной на таком расстоянии от звезды, чтобы на ней жидкая вода. Только тогда жизнь сможет появиться и эволюционировать. В целом обитаемая зона простирается на 13 – 35 тыс. лет от центра Млечного пути. Учитывая, что наша солнечная система находится в 20 – 29 световых годах от ядра галактики, мы как раз посередине «жизненного оптимума».

Впрочем, в настоящее время Солнечная система действительно является очень спокойным «районом» космоса. Планеты системы давно сформировались, «блуждающие» планеты либо разбились о соседей, либо сгинули за пределами нашего звездного дома, да и количество астероидов и метеоритов значительно снизилось по сравнению с тем хаосом, что царил вокруг 4 миллиарда лет назад.

Мы считаем, что ранние звезды формировались только из водорода и гелия. Но так как звезды – это своего рода , с течением времени образовались более тяжелые элементы. Это крайне важно, потому что, когда звезды умирают и взрываются, образуется . Их остатки становятся строительным материалом для более тяжелых элементов и своеобразными семенами галактики. Откуда бы иначе им взяться, как не из «кузнецы химических элементов» находящейся в недрах звезд?

Вот, для примера, углерод в наших клетках, кислород в наших легких, кальций в наших костях, железо в нашей крови – все это те самые тяжелые элементы.

В необитаемой зоне, по-видимому, отсутствовали те процессы, которые сделали возможным возникновение жизни на Земле. Ближе к краю галактики взорвалось меньше массивных звезд, следовательно, было выброшено меньше тяжелых элементов. Дальше в галактике вы не найдете атомов таких важных для жизни элементов как кислород, углерод, азот. Обитаемая зона характеризуется наличием этих более тяжелых атомов и за ее границами жизнь попросту невозможна.

Если крайняя часть галактики – «плохой район», то ее центральная часть еще хуже. И чем ближе к галактическому ядру, тем опаснее. Во времена Коперника, мы считали, что находимся в центре Вселенной. Похоже, после всего, что мы узнали о небесах, мы решили, что находимся в центре галактики. Теперь, когда нам известно еще больше, мы понимаем, как нам повезло оказаться не в центре.

В самом центре Млечного пути находится объект огромной массы – Стрелец А, черная дыра около 14 млн. км в поперечнике, ее масса в 3700 раз больше массы нашего Солнца. Черная дыра, находящаяся в центре галактики, выделяет мощное радиоизлучение, достаточное для того, чтобы испепелить все известные формы жизни. Так, что приблизится к ней невозможно. Есть и другие регионы галактики, которые непригодны для жизни. Например, из-за сильнейшего излучения .

Звезды О-типа – это гиганты значительно горячее Солнца, больше его в 10 – 15 раз и выбрасывающие в космос колоссальные дозы ультрафиолетового излучения. Под лучами такой звезды гибнет все. Такие звезды способны разрушить планеты еще до того, как они закончат формироваться. Излучение от них столь велико, что просто сдирает материю с формирующихся планет и планетарных систем, и буквально срывает планеты с орбит.

Звезды O-типа, это самые настоящие «звезды смерти». Никакая жизнь невозможна в радиусе 10 и больше световых лет от них.

Так что наш уголок галактики – как цветущий сад между пустыней и океаном. У нас есть все необходимые для жизни элементы. На нашем участке главным барьером против космических лучей служит магнитное поле Солнце, а против радиации от Солнца нас защищает магнитное поле Земли. Магнитное поле Солнца отвечает за солнечный ветер , который является защитой от тех неприятностей, которые приходят к нам с края Солнечной системы. Магнитное поле Солнце раскручивает солнечный ветер, представляющий из себя заряженные потоки протонов и электронов, выстреливающих из Солнца со скоростью миллион км в час.

Солнечный ветер несет магнитное поле на расстояние в три раза превышающее орбиту Нептуна. Но миллиард километров спустя в месте, называемом гелиопаузой, солнечный ветер иссякает и почти исчезает. Замедлившись, он перестает быть барьером для космических лучей межзвездного пространства. Это место является границей гелиосферы.

Если бы не было гелиосферы, космические лучи беспрепятственно проникали бы в нашу Солнечную систему. Гелиосфера работает, как клетка для погружения с акулами, только вместо акул здесь радиация, а вместо аквалангиста – наша планета.

Некоторые из космических лучей все же проникают через барьер. Но теряют при этом большую часть своей силы. Раньше мы считали, что гелиосфера – это такой изящный барьер, что-то вроде складчатого занавеса из магнитного поля. До тех пор, пока не были получены данные с Вояджера 1 и Вояджера 2, запущенных в 1997 году. В начале 21 века были обработаны данные с аппаратов. Оказалось, что магнитное поле на границе гелиосферы представляет собой что-то вроде магнитной пены, каждый пузырек которой составляет около 100 млн. км в ширину. Мы привыкли думать, что поверхность поля сплошная, создающая надежный барьер. Но, как выяснилось, оно состоит из пузырьков и узоров.

Когда мы исследуем наши галактические окрестности, нам мешает пыль и газ, чтобы рассмотреть объекты более детально. За долгую историю наблюдений мы выяснили следующее. Когда мы исследуем ночное небо невооруженным глазом или с помощью телескопа, мы видим многое в видимой части спектра. Но это лишь часть того, что там есть на самом деле. Некоторые телескопы могут видеть через космическую пыль благодаря функции инфракрасного видения .

Звезды очень горячи, но скрываются в оболочках из пыли. А в инфракрасный телескоп мы можем их наблюдать. Объекты могут быть прозрачными или непрозрачными, все зависит от световых волн, то есть света, который либо может, либо не может через них пройти. Если что-то вроде газа или космической пыли становится между объектом наблюдения и телескопом, можно переместиться в другую часть спектра, где световые волны будут иметь другую частоту. В таком случае это препятствие может стать видимым.

Вооружившись инфракрасными и другими приспособлениями, мы обнаружили вокруг себя множество космических соседей, о существовании которых не подозревали. Существует ряд приборов для наблюдения за космическими телами, звездами в разных частях спектра.

Обнаружив множество новых космических тел вокруг нас, мы задумываемся как они ведут себя, как они повлияли на Землю в момент зарождения жизни на Земле. Некоторые из них – «хорошие соседи», то есть ведут себя предсказуемо, движутся по предсказуемой траектории. «Плохие соседи» — непредсказуемые. Это может быть взрыв умирающей звезды или столкновение, осколки от которого полетят в нашу сторону.

Некоторые из наших соседей могли в древности принести нам «подарок», который изменил все. Когда наша Земля заканчивала формировать и остывала, поверхность была все еще очень горячей. А так как вода попросту испарилась, вновь она могла быть принесена на Землю многочисленными кометами или астероидами. Существует множество теорий о том, как мы могли получить воду.

Согласно одной из них, воду могли принести ледяные тела, пришедшие в Солнечную систему извне или оставшиеся после формирования Солнца и планет. Согласно одной из последних теорий около 4 млн. лет назад гравитация тяжелого газового гиганта Юпитера направила ледяные астероиды в сторону Марса, Земли и Венеры. Но только на Земле лед смог проникнуть в мантию. Вода размягчила Землю и инициировала процесс тектоники плит, вследствие чего появились континенты и океаны.

А каким образом в океанах зародилась жизнь? Может быть, необходимы органические соединения попали в них из космоса? В некоторых метеоритах, которые называют углекислые хандриты, ученые обнаружили органические соединения, которые могли способствовать развитию жизни на Земле. Эти соединения похожи на те, которые были собраны из антарктических метеоритов, образцов межзвездной пыли и фрагментов комет, полученных НАСА из звездной пыли в 2005 году.

Происхождение жизни – это длинная цепь реакций органических соединений. Все органические соединения содержат углерод и вполне возможно, что различные обстоятельства привели к тому, что образовались различные органические соединения. Одни могли образовать здесь, на планете, а другие в космосе. Вполне возможно, что без этих межгалагтических подарков от наших соседей жизнь на Земле так бы и не появилась.

Но есть и непредсказуемые соседи. Например, звезда — оранжевый карлик Глизе 710 . Эта звезда на 60% массивнее Солнца, в настоящее время всего в 63 световых годах от Земли и продолжает приближаться к Солнечной системе.

Облако Оорта — громадная сфера из замороженных камней и глыб льда, окружающая Солнечную систему (в центре). Источник комет и блуждающих метеоритов «из вне» нашей системы

Также на расстоянии 1 светового года от Земли находится так называемое облако Оорта . Мы можем наблюдать кометы из облака Оорта, если они проходят достаточно близко к Солнцу, но обычно так не бывает и мы их не видим.

Есть же и просто «странные соседи». Один из них (вернее, целая семья) это звезды созвездия Центавра.

Звезда Альфа Центавра, самая яркую звезду в созвездии Центавра, для нас третья по яркости звезда ночного неба. Она – ближайшая наша соседка, находится в 4 световых годах от нас. До 20-го века считалось, что это двойная звезда, но позже выяснилось, что мы наблюдаем ни что иное, как звездную систему из обращающихся вокруг друг друга сразу трех звезд!

Альфа Центавра А очень похожа на наше Солнце, и масса у неё такая же. Альфа Центавра Б немного меньше, а третья звезда Проксима Центравра является звездой типа М, масса которой составляет около 12% массы Солнца. Она так мала, что мы не можем наблюдать ее невооруженным взглядом.

Оказывается, многие другие наши звезды-соседи также имеют несколько систем. Сириус, находящийся на расстоянии около 8,5 световых лет, известный как одна из самых ярких звезд на небе, тоже является двойной звездой. Большинство звезд меньше нашего Солнца и часто являются двойными. Так что наше Солнце-одиночка – скорее исключение из правил.

Большинство звезд вокруг – это красные или коричневые карлики. Красные карлики составляют до 70% всех звезд не только в нашей галактике, но и во Вселенной. Мы привыкли к нашему Солнцу, оно кажется нам эталоном, но красных карликов гораздо больше.

Мы не были уверены есть ли среди наших соседей коричневые карлики до 1990 года. Эти космические объекты также уникальны — не совсем звезды, но и не планеты, да и цвет у них совсем не коричневых.

Коричневые карлики – одни из самых загадочных обитателей нашей Солнечной системы, поскольку они действительно очень холодные и очень темные. Они излучают мало света, поэтому их крайне трудно наблюдать. В 2011 году один из телескопов НАСА, широкоугольный исследователь в инфракрасных лучах, где-то на расстоянии 9 – 40 световых лет от Земли обнаружил множество коричневых карликов с такой температурой поверхности, которая когда-то считалась невозможной. Некоторые из этих коричневых карликов настолько прохладны, что их можно даже потрогать. Температура их поверхности всего 26°С. Звезды комнатной температуры — чего только не увидишь во вселенной!

Однако снаружи нашего «местного пузыря» есть не только звезды, но и планеты, а точнее экзопланет — то есть обращающихся не вокруг Солнца. Открытие такие планет — чрезвычайно сложное событий. Это все равно, что наблюдать за одной единственной лампочкой в ночном Лас Вегасе! Фактически, мы даже не видим этих планет, а только догадываемся о них, когда Телескоп Кеплера отслеживающий изменение яркости звезд, фиксирует ничтожное изменение блеска звезды, когда одна из экзопленет, проходит по её диску.

Насколько нам известно, наш ближайший экзопланетарный сосед находится буквально «на одной» улице с нами, «всего» в 10 световых годах, на орбите оранжевой звезды Эпсилон Эридана. Однако экзопланета похожа скорее не на Землю, а на Юпитер, так как является огромным газовым гигантом. Впрочем, учитывая, что с момента первых открытий экзопланет прошло меньше двух десятков лет, как знать, что ждет нас дальше.

В 2011 году в нашем районе астрономы обнаружили новый вид планет – бездомные планеты. Оказывается, существуют планеты, которые не вращаются вокруг своей родительской звезды. Они начали свою жизнь, как и все остальные планеты, но в силу тех или иных причин были смещены со своей орбиты, покинули свои солнечные системы и теперь бесцельно блуждают по галактике без возможности вернуться домой. Это удивительно, но потребуется новое определения для названия подобного рода планет, для планет, существующих вне притяжения своих родительских звезд.

Впрочем, на горизонте маячит и пара событий, которые могут стать настоящей сенсацией даже в масштабах космоса.

Древним людям Земля казалась огромной. Ведь никому не удавалось обойти ее пешком или даже объехать на коне. Поэтому и философы древности, размышляя об устройстве Вселенной, помещали Землю в ее центр. Все небесные тела, полагали они, вращаются вокруг Земли.

В современном мире, когда есть авиация и космические корабли, мысль о том, что наша планета вовсе не центр мироздания, никому не кажется крамольной.
Однако впервые эту идею высказал еще в III веке до н.э. Аристарх Самосский. К сожалению, почти все труды этого древнегреческого ученого утрачены и известны нам лишь в пересказе его современника Архимеда. Поэтому предположение о том, что Земля вращается вокруг Солнца (а не Солнце вокруг Земли), связывают обычно с именем польского астронома Николая Коперника, жившего в XV-XVI вв. Коперник расположил известные ему планеты Солнечной системы так: Меркурий, Венера, Земля, Марс, Юпитер и Сатурн вращаются вокруг Солнца, а Луна — вокруг Земли. Но дальше за Сатурном Коперник поместил «сферу неподвижных звезд» — некую стену, замыкающую Вселенную. А предполагать, что находится за ней, Коперник не мог — для этого ему не хватало данных. Не стоит обвинять Коперника в близорукости, ведь телескоп, приблизивший к нам далекий космос, впервые использовал Галилей лишь сто лет спустя.

Древнегреческий ученый Птоломей разработал модель Вселенной, в которой Земля находилась в центре мироздания, а остальные небесные тела обращались вокруг нее.

Современная наука знает, что наше Солнце — одна из бесчисленных звезд во Вселенной, не самая большая, не самая яркая, не самая горячая, более того, Солнце находится вдали от центра нашей Галактики — гигантского скопления звезд, к которым относится и Солнце. И в этом нам повезло. Ведь иначе на Землю обрушивались бы такие потоки космических лучей, что жизнь на ней едва возникла бы. Вокруг Солнца вращаются 9 крупных планет, малые планеты — астероиды, кометы и совсем мелкие «камушки» — метеорные тела. Все это вместе образует Солнечную систему.


По современным представлениям, вокруг Солнца обращаются 9 крупных планет. 4 ближайшие к Солнцу — небольшие и твердые. Далее лежит пояс малых планет (астероидов), а за ним — планеты-гиганты, состоящие в основном из жидкостей и газов. Самая дальнаяя из известных планет Солнечной системы — Плутон — к тому же самая маленькая и самая холодная.

Земля — одна из 9 планет. Не самая большая, но и не самая маленькая, не самая близкая к Солнцу, но и не самая далекая. Крупнейшая планета — Юпитер. Его масса в 318 раз больше земной. Но у Юпитера нет твердой поверхности, по которой можно было бы ходить. Самая далекая от Солнца планета — Плутон почти в 40 раз дальше от Солнца, чем Земля. Его поверхность твердая, ходить по ней было бы легко — Плутон меньше Луны, притягивает к себе слабо. Вот только холодно там: температура на 200-240°C ниже точки замерзания воды. При таких условиях не только вода, но и большинство газов становятся твердыми. Зато на Венере, нашей ближайшей соседке, температура выше +450°C. Получается, что Земля — единственная пока планета во Вселенной, подходящая для жизни.

От Земли до Солнца около 150 млн км. Много это или мало? Сравним это расстояние с размерами Солнца и Земли. Диаметр Солнца меньше примерно в 100 раз, а диаметр Земли — в 10000 раз. Это значит, что если мы изобразим Солнце кружком диаметром 1 см (с монету достоинством в 1 рубль), то Землю нам придется нарисовать на расстоянии 1 м (на другом конце большого стола), причем она будет едва заметной точной.

Планета Земля, Солнечная система , и все звёзды, видимые невооружённым глазом находятся вГалактике Млечный Путь , которая представляет из себя спиральную галактику с перемычкой, имеющая два ярко выраженных рукава начинающихся на концах перемычки.

Это было подтверждено в 2005 году космическим телескопом имени Лаймана Спитцера, который показал, что центральная перемычка нашей галактики является большей чем считалось ранее. Спиральные галактики с перемычкой — спиральные галактики с перемычкой («баром») из ярких звёзд, выходящей из центра и пересекающей галактику посередине.

Спиральные ветви в таких галактиках начинаются на концах перемычек, тогда как в обычных спиральных галактиках они выходят непосредственно из ядра. Наблюдения показывают, что около двух третьих всех спиральных галактик имеют перемычку. По существующим гипотезам, перемычки являются очагами звёздообразования, поддерживающими рождение звёзд в своих центрах. Предполагается, что посредством орбитального резонанса, они пропускают сквозь себя газ из спиральных ветвей. Этот механизм и обеспечивает приток строительного материала для рождения новых звёзд. Млечный Путь вместе с галактикой Андромеды (M31), Треугольника (М33), и более 40 меньшими галактиками-спутниками образуют Местную Группу Галактик, которая, в свою очередь, входит в Сверхскопление Девы. "Использование инфракрасного изображения с телескопа Spitzer НАСА, позволило ученым обнаружить, что элегантная спиральная структура Млечного Пути имеет только два преобладающих рукава от концов центрального бара звёзд. Ранее считалось, что наша галактика, обладает четырьмя основными рукавами ".

/s.dreamwidth.org/img/styles/nouveauoleanders/titles_background.png" target="_blank">http://s.dreamwidth.org/img/styles/nouveauoleanders/titles_background.png) 0% 50% no-repeat rgb(29, 41, 29);"> Структура Галактики
По внешнему виду, галактика напоминает диск (т.к. основная масса звёзд расположена в форме плоского диска) с диаметром около 30 000 парсек (100 000 световых лет, 1 квинтиллион километров) при оценочной средней толщине диска порядка 1000 световых лет, диаметр выпуклости в центре диска составляет 30 000 световых лет. Диск погружен в гало сферической формы, а вокруг него располагается сферическая корона. Центр ядра Галактики находится в созвездии Стрельца. Толщина галактического диска в том месте, где находится Солнечная система с планетой Земля, составляет 700 световых лет. Расстояние от Солнца до центра Галактики 8,5 кило парсек (2,62.1017 км, или 27 700 световых лет).Солнечная система находится на внутреннем крае рукава, носящего название рукав Ориона. В центре Галактики, по всей видимости, располагается сверх массивная чёрная дыра (Стрелец A*) (около 4,3 миллиона масс Солнца) вокруг которой, предположительно, вращается чёрная дыра средней массы от 1000 до 10 000 масс Солнца и периодом обращения около 100 лет и несколько тысяч сравнительно небольших. Галактика содержит, по самой низкой оценке, порядка 200 миллиардов звёзд (современная оценка колеблется в диапазоне предположений от 200 до 400 миллиардов). По состоянию на январь 2009, масса Галактики оценивается в 3.1012 масс Солнца, или 6.1042 кг. Основная масса Галактики содержится не в звездах и межзвёздном газе, а в не светящемся гало из тёмной материи.

По сравнению с гало диск Галактики вращается заметно быстрее. Скорость его вращения не одинакова на различных расстояниях от центра. Она стремительно возрастает от нуля в центре до 200—240 км / с на расстоянии 2 тыс. световых лет от него, затем несколько уменьшается, снова возрастает примерно до того же значения и далее остается почти постоянной. Изучение особенностей вращения диска Галактики позволило оценить его массу, оказалось, что она в 150 миллиардов раз больше массы Солнца. Возраст Галактики Млечный Путь равен 13 200 млн лет, почти так же стара, как Вселенная. Млечный Путь является частью Местной группы галактик.

/s.dreamwidth.org/img/styles/nouveauoleanders/titles_background.png" target="_blank">http://s.dreamwidth.org/img/styles/nouveauoleanders/titles_background.png) 0% 50% no-repeat rgb(29, 41, 29);"> Местоположение Солнечной системы Солнечная система находится на внутреннем крае рукава, носящего название рукав Ориона, в окраинной части Местного Сверх скопления (Local Supercluster), который иногда называют также Сверх скоплением Девы. Толщина галактического диска(в том месте где находится Солнечная система с планетой Земля), составляет 700 световых лет. Расстояние от Солнца до центра Галактики 8,5 кило парсек (2,62.1017 км, или 27 700 световых лет). Солнце расположено ближе к краю диска, чем к его центру.

Вместе с другими звёздами Солнце вращается вокруг центра Галактики со скоростью 220—240 км / с, совершая один оборот примерно за 225-250 миллионов лет(что составляет один галактический год) . Таким образом, за все время существования Земля облетела вокруг центра Галактики не более 30 раз. Галактический год Галактики составляет 50 миллионов лет, Период обращения перемычки 15-18 миллионов лет. В окрестностях Солнца удается отследить участки двух спиральных рукавов, которые удалены от нас примерно на 3 тыс. световых лет. По созвездиям, где наблюдаются эти участки, им дали название рукав Стрельца и рукав Персея. Солнце расположено почти посередине между этими спиральными ветвями. Но сравнительно близко от нас (по галактическим меркам), в созвездии Ориона, проходит еще один, не очень четко выраженный рукав — рукав Ориона, который считается ответвлением одного из основных спиральных рукавов Галактики. Скорость вращения Солнца вокруг центра Галактики почти совпадает со скоростью волны уплотнения, образующей спиральный рукав. Такая ситуация является нетипичной для Галактики в целом: спиральные рукава вращаются с постоянной угловой скоростью, как спицы в колесах, а движение звезд происходит с другой закономерностью, поэтому почти все звездное население диска то попадает внутрь спиральных рукавов, то выпадает из них. Единственное место, где скорости звезд и спиральных рукавов совпадают — это так называемый коротационный круг, и именно на нем расположено Солнце. Для Земли это обстоятельство чрезвычайно важно, поскольку в спиральных рукавах происходят бурные процессы, образующие мощное излучение, губительное для всего живого. И никакая атмосфера не смогла бы от него защитить. Но наша планета существует в сравнительно спокойном месте Галактики и в течение сотен миллионов (или даже миллиардов) лет не подвергалась воздействию этих космических катаклизмов. Возможно именно поэтому на Земле смогла родиться и сохраниться жизнь, возраст которой насчитывается в 4,6 миллиарда лет. Схема расположения Земли во Вселенной в серии из восьми карт, которые показывают, слева направо, начиная с Земли, двигаясь в Солнечной системе , на соседние звездные системы, на Млечный Путь, на местные Галактические группы, на местные сверхскопления Девы , на нашем местном сверх скопления, и заканчивается в наблюдаемой Вселенной.

Солнечная система: 0,001 световых лет

Соседи в межзвездном пространстве


Млечный Путь: 100000 световых лет

Местные Галактические группы


Местное сверх скопление Девы


Местные сверх скопления галактик


Наблюдаемая Вселенная